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1 Abstract

This deliverable (DV 2.4.6), part of the RETURN project under WP4 and Task 2.4.3, addresses
the development and application of methodologies for assessing and mapping ground instability hazards
in large plains, with a specific focus on soil liquefaction, regional subsidence, and anthropogenic
sinkholes. The overarching objective is to produce thematic hazard severity maps and zoning based on
combined or coupled geohazard triggers, contributing to more resilient communities under a changing

climate.

A central aspect of the deliverable is the implementation of a multi-level "tool chain™ approach
that integrates predisposing, preparatory, and triggering factors to assess hazard susceptibility. These tool
chains allow for both qualitative and quantitative modeling across different spatial and temporal scales.
Three main processes are analyzed: soil liquefaction, subsidence, and anthropogenic sinkholes, each

studied within its geomorphological context and supported by case studies and scenario-based analysis.

For soil liquefaction, a tiered assessment methodology is applied. At Level 1, geological and
geomorphological data, along with groundwater depth and Peak Ground Acceleration (PGA), are used to
generate screening maps of susceptibility. At Level 2, a semi-empirical, stress-based evaluation using
Cone Penetration Test (CPT) data is applied to calculate the Factor of Safety (FS) and Liquefaction
Potential Index (LPI). The Emilia-Romagna region, affected by the 2012 earthquake, is used as a test area,
revealing significant liquefaction susceptibility in Holocene fluvial deposits. Hazard scenarios are
modeled by varying groundwater levels and PGA to generate spatially explicit LP1 and settlement maps,

which are further analyzed using statistical and spatial aggregation techniques.

Subsidence assessment leverages satellite-based Persistent Scatterer Interferometry (PSI) and
temporal modeling to identify and classify deformation trends in the Po delta. This includes detection of
abrupt changes, long-term trends, and seasonal variability, providing insight into both natural and
anthropogenic drivers. The results are integrated into zoning maps to support urban planning and

infrastructure management.

In the case of anthropogenic sinkholes, a dual-track methodology is introduced. One approach
focuses on static susceptibility analysis using ensemble machine learning models (e.g., Random Forest,
GBM, MaxEnt), while the second incorporates temporal forecasting through Poisson distribution
modeling. The models are calibrated and validated using detailed inventories from cities such as Naples
and Palermo, producing multi-scenario hazard forecasts that consider both sinkhole diameter and return
period (from 1 month to several years). The final outputs are twelve combined magnitude-temporal risk

scenarios that support targeted risk mitigation strategies.

Across all analyses, the RETURN project emphasizes integrated modeling, data fusion, and Al-
6
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This deliverable provides a comprehensive framework for multi-hazard risk assessment in large plains,

promoting robust and transferable methodologies adaptable to various geological and climatic contexts.

2 Introduction

This Deliverable (DV) presents the research activities carried out within SPOKE VS2 (Ground
Instabilities) of the RETURN project. RETURN "Multi-risk science for resilient communities under a

changing climate" was established with the aim of supporting communities in addressing the challenges

posed by multiple, interacting hazards that are becoming increasingly frequent and intense due to climate
change. The project is designed to develop practical tools and methodologies for managing complex
climate-related risks such as wildfires, floods, droughts, and other extreme events, as earthquakes or
volcanic eruptions. Through an interdisciplinary and multi-scale approach, RETURN leverages cutting-
edge technologies, including satellite data, numerical modeling, and artificial intelligence (Al), to analyze
how different hazards interact and influence each other. These technologies enable the creation of accurate
forecasts and simulations, supporting informed decision-making and strategic planning. Moreover,
RETURN aims to enhance the resilience of both infrastructures and citizens, not only by addressing

individual hazards but also by understanding and mitigating the compound and cascading effects of

multiple concurrent or sequential events. The ultimate goal is to inform and support national and EU

policy development on risk management.

Within this broader framework, SPOKE VS2 focuses specifically on Ground Failures caused by
geohazards such as landslides, sinkholes and subsidence, which may result from consolidation processes
or liquefaction phenomena. One of the core objectives of SPOKE 2 is the mapping and risk assessment of
these ground instabilities, aimed at producing integrated hazard maps. Each process was analyzed in terms
of three categories of factors:

Predisposing factors (e.g., geological and geomorphological conditions),
Preparatory factors (e.g., long-term environmental changes or human activity),
Triggering factors (e.g., earthquakes, volcanic activity, or heavy rainfall).

By quantifying the influence of these categories, the project develops probabilistic and
deterministic methods to reconstruct instability scenarios both on land and in marine environments. This
allows for comprehensive assessments of the impact that such phenomena may have on the built
environment, at both local and national scales. Particular attention is given to the combined and cascading

effects of ground instabilities, exploring how one event may exacerbate or trigger others.

This document summarizes some of the activities of WP4, which is organized in 4 TASKs related

7
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to the geomorphological setting/context in which ground instabilities develop. In particular, it focuses on:
Task 2.4.3: Multiple geohazards for ground instabilities in large plains, sinkhole zones (TK3).

It is focused on ground instabilities in large plains, including soil subsidence and sinkhole zones.
Main topics of this task will concern multi-hazard effects and indicators in case of soil displacements in
alluvial plains by combining process understanding (DV 2.4.5) and hazard mapping (DV 2.4.6) for
multiple triggers. Following the approach proposed by RETURN, each process was divided into tasks on

the basis of the geomorphological setting and successively classified through a kinematic approach.
In plain areas, the analyzed phenomena are:
Soil Liquefaction, process characterized by rapid occurrence;
Sinkholes, characterized by both slow and rapid kinematics;
Subsidence, which is a slow-moving process.

The occurrence of these phenomena in alluvial plains is analyzed with a multi-level approach
labelled as "tool chain". This methodology accounts for the use of “tools” in terms of methods and data
more suitable to model the effect of a hazard at a certain scale of representation. Tool chains are collected
in the DV 2.4.5, while here are applied to test areas, for generating hazard maps, conduct uncertainty
analysis on input and output data, and validate the overall approach. These results contribute to the broader

goal of developing robust, transferable models for the informatic POC.

3 Soil Liquefaction assessment

Earthquake induced liquefaction can be defined as the temporary transition of a granular soil from
the solid to a fluid state as a conseguence of the increased pore-water pressures. The effects of liquefaction
can be particularly damaging to the built environment, leading to consequences such as the sinking or
tilting of buildings and infrastructure, as well as damage to roads and pipelines. In recent years, growing
awareness of this risk has led to the development of hazard maps aimed at assessing and mitigating the

impact of liquefaction in vulnerable areas.
Liquefaction typically occurs on loose saturated sandy deposits, being their contractive tendency

upon cyclic shearing inhibited by water with the onset of positive excess pore pressures (Au). If the excess

pore pressures build up is positive, the normal effective stresses will reduce during the seismic action,

eventually increasing back during the post-seismic consolidation phase. Since the soil shear strength t(c”)

and stiffness G(o’) directly depend on the effective stresses, they will progressively reduce during the

UNIVERSITA DEGLISTUDI DI NAPO
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liquefaction, theoretically at ru=1, where ru is the pore pressure ratio defined as Au/c’c). At the end of
cyclic action, consolidation will take place due to the excess pore pressure drainage. Figure 1 summarized

the phases before earthquake and after when liquefaction occurs (Flora et al., 2023).

J/ Oyo lov(t)zc\/ﬂ J( Uv(t)ZOW
Teye
> Ug «— — / «— —> |  ug+Au(t) «—
Oho op(t)#0ke op(t)#0n,
[

lithostatic condition effects of seismic shaking post-seismic condition
(before earthquake) (during earthquake, 0<t<t,) (after earthquake, during consolidation t.<t<t.tt.)

Figure 1 Stress state in a liquefiable layer before (t=0) and during an earthquake of duration te and after the
earthquake, during the post-seismic consolidation of duration tc (Flora et al., 2023).

Liquefaction study methodologies include empirical approaches based on field investigations,
such as Standard Penetration Tests (SPT) and Cone Penetration Tests (CPT), which measure soil
resistance and help estimate its seismic response. Additionally, analytical methods based on advanced
numerical models are employed. These models simulate the dynamic behavior of soils during an
earthquake, incorporating variables such as stress history and permeability, to provide more accurate
predictions of how liquefiable soils will behave under different seismic scenarios. By combining these
techniques, it becomes possible to produce reliable assessments that inform urban planning and
engineering interventions aimed at reducing the vulnerability of the built environment to liquefaction,
thereby enhancing the safety of communities in seismically active areas. Over the past four decades,
research on liquefaction phenomena has led to multiple perspectives in describing the mechanisms
involved. Some authors define liquefaction as the condition in which the effective stress temporarily drops
to zero, while others consider it to occur when the soil deforms under a constant shear stress. The former

is referred to as cyclic mobility, and the latter as flow liquefaction.

To date, most studies have focused primarily on the liquefaction potential, i.e., whether liquefaction will
occur or not. While the estimation of liquefaction effects has improved with the development of empirical
procedures, the uncertainty in predicting these effects remains very high. Achieving a more reliable
forecast of structural performance requires more accurate prediction of liquefaction effects (Kramer and
Elgamal, 2001).
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and earthquake characteristics. Key soil properties include dynamic shear modulus, damping
characteristics, grain size distribution, relative density, and soil fabric. Among environmental factors, soil
formation processes, seismic and geological history, lateral earth pressure coefficient, depth to the water
table, and effective confining pressure significantly influence liquefaction behavior. Additionally, the

intensity and duration of ground shaking are critical in determining liquefaction occurrence.

To evaluate liquefaction potential, both macroscopic and microscopic assessment methods are
used, involving field and laboratory tests. Critical conditions are typically found at depths less than 15
meters and for seismic intensities above VI on the Modified Mercalli scale (Kramer and Stewart, 2024)
while soil parameters that indicate a higher probability of liquefaction include:

e Mean grain size between 0.02 and 1.0 mm,
e Coefficient of uniformity below 10,
e Relative density below 75%,

e Plasticity index below 10.
The susceptibility of a soil to liquefaction can be evaluated using three main criteria:

1) Historical criterion: Soils that have liquefied in past seismic events are likely to do so again,
and this can be assessed through historical seismic data.

2) Geological/geomorphological criterion: Soils formed through fluvial, lacustrine, eolian, or
artificial fill processes (especially hydraulic fills) are particularly susceptible. Youd and
Perkins (1978) analyzed the liquefaction susceptibility of various deposit types by assigning
qualitative susceptibility scores based on depositional environment and geologic age. The
relative susceptibility chart by Anderson et al. (2006) (shown in Figure 2) indicates that recent
unconsolidated deposits, such as Holocene river channels, alluvial plains, and deltaic deposits,
show high to very high liquefaction susceptibility. In contrast, alluvial fan and plain deposits,
beaches, glacial deposits, residual soils, tuffs, and compacted fills are generally less
susceptible. For all deposit types, susceptibility decreases with increasing age, from recent (<
500 years) to pre-Pleistocene, with the exception of loess, which remains susceptible to
liquefaction during strong earthquakes regardless of age. Holocene sediments are more

susceptible than Pleistocene, while Pre-Pleistocene sediments are rarely affected.

10
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deposit in deposits <500 yr Holocene tocene tocene
(1) (2) (3) {4) () (6}
(a) Continental Deposits "
River channel —rLocally variable | Very high | High | Low Very low
Flood plain Locally variable | High Moderate | Low Very low
Alluvial fan and
plain Widespread Moderate | Low Low Very low
Marine terraces
and plains Widespread — Low Very low | Very low
Delta and fan-
delta Widespread High Moderate | Low Very low
Lacustrine and
playa Variable High Moderate | Low Very low
Colluvium Variable High Moderate | Low Very low
Talus Widespread Low Low Very low | Very low
Dunes Widespread High Moderate | Low Very low
Loess Variable High High High Unknown
Glacial tull Variable Low Low Very low | Very low
Tuff Rare Low Low Very low | Very low
Tephra Widespread High High 2 ?
Residual soils Rare Low Low Very low | Very low
Sebka Locally variable | High Maderate | Low Very low
(b) Coastal Zone
Delta Widespread Very high | High Low Very low
Esturine Locally variable | High Moderate | Low Very low
Beach
High wave
energy Widespread Moderate | Low Very low | Very low
Low wave :
energy Widespread High Moderate | Low Very low
Lagoonal Locally variable | High Moderate | Low Very low
Fore shore Locally variable | High Moderate | Low Very low
(¢} Artificial
Uncompacted fill | Variable Very high — -
Compacted fill | Variable Low - — o L

Figure 2. Liquefaction susceptibility of sedimentary deposits by Youd and Perkins (1978), (from Anderson et al.,
2006).

3) Compositional criterion: This pertains to soil grain structure. Uniformly graded soils are more
prone to liquefaction than well-graded soils, and rounded particles are more susceptible than
angular ones. Even cohesive soils with fines content (particles < 0.002 mm) below 30%, liquid
limits under 35%, and water content exceeding 90% of the liquid limit may experience

significant strength loss and be considered liquefiable if deformation exceeds certain
thresholds (Seed et al., 1983).

In addition to sandy and silty soils, gravelly soils can also exhibit liquefaction vulnerability,
particularly when voids between coarse particles are filled with fines, or when surrounded by low-
permeability soils that restrict drainage and promote cyclic pore pressure buildup. However, because
gravelly deposits are typically dense and stable, a preliminary conservative analysis is often sufficient to

assess their liquefaction risk. Generally, pre-Holocene gravel deposits are generally considered less
susceptible.

A synthesis of the various approaches and methodologies was provided by Silvestri and D'Onofrio
(2014), who stated that the assessment of liquefaction triggering, and more generally the response of a
soil deposit in terms of pore pressure build-up, can be carried out using methods of increasing complexity,

11
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as briefly summarized in Table 1. The methods more suitable to the mapping are represented by level 1

and level 2. The others 3 and 4 rely on numerical modelling and can be applied at the scale of the site (1D)

or of the cross-section (2D) and for this reason are out of the scope of the tool chain.

Table 1. Analyses for liquefaction triggering assessment modified after (Silvestri and D'Onofrio, 2014).

Level of analysis Type of analysis Constitutive model Calculation approach Output
Evaluation of some
Screening parameters (grain size
Level 1 criteria - distribution, ground water Liquefaction yes, no
(qualitative) table and expected
maximum acceleration)
Semi-empirical o Actions (demand) vs.
Level 2 Elementary Simplified stress-based . .
methods Resistance (capacity)
Simplified Simplified (mostly ) S Total stresses, shear
. . . Dynamic (with simplified .
Level 2 dynamic visco-elastic, strains, pore pressure
geometry) .
analyses uncoupled) increments*
Total and effective
Advanced Advanced (elasto- o .
) o Dynamic (with complex stresses, shear strains,
Level 4 dynamic plastic with .
. 3D geometry) pore pressure increments,
analyses hardening, coupled) ) .
residual displacements

*Calculated through analytical correlations.

According to NTC, 2018, the likelihood of liquefaction occurring in saturated sandy soils is low
or zero if at least one of the following conditions occurs:

1. maximum expected accelerations at ground level in free field conditions less than 0.1g;
2. average seasonal depth of the groundwater table higher than 15 m from ground level,

3. deposits consisting of clean sands with normalised penetrometer resistance (N1)eo> 30 Or (cin>
180;

4. particle size distribution outside the zones shown in Figure 3a in the case of soils with
uniformity coefficient Uc< 3.5 and in Figure 3b in the case of soils with uniformity coefficient
Uc> 3.5.

12
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Figure 3. Particle size ranges of soils susceptible to liquefaction (adapted from NTC (2018) with uniform
coefficient Uc< 3.5 (a) and Uc> 3.5 (b).

If the first condition is not verified and, therefore, the maximum acceleration expected at ground
level is higher than 0.1 g, the geotechnical investigations must be aimed at determining the parameters

necessary to verify the other three conditions.

When none of the four abovementioned conditions is satisfied, NTC (2018) states that the site is
potentially susceptible to liquefaction (i.e. prone, due to the presence of predisposing elements) and the
area is potentially at risk (due to the non-negligible seismic hazard). It is therefore necessary to assess the

liquefaction safety factor at the depths where potentially liquefiable soils are present.

3.1 Tool chain for soil liquefaction

As described in the DV 2.4.5., to create a unified framework across the work packages (WPs), "tool
chains" have been developed to capture the full sequence of factors involved in a specific process, from
predisposing to preparatory and finally to triggering factors. According to the definitions provided in VS2,
this classification is based on a temporal scale: predisposing factors are considered stable over the
observation period, while preparatory factors can vary or follow cyclic trends within the same timeframe.

Triggering events, on the other hand, occur within a very short and clearly defined timespan.

In the context of soil liquefaction, predisposing factors include geological characteristics,
earthquakes with magnitudes greater than 5, fluctuations in the groundwater table, peak ground

acceleration (PGA), and geotechnical properties (see Figure 4).

The liquefaction tool chain assigns different levels of significance to each factor, indicated by a star
rating: very high importance (4 stars for water table depth less than 15 m) and high importance (3 stars

for geology, geotechnical properties, and expected PGA > 0.19).

This process enables both qualitative and quantitative assessments of liquefaction susceptibility and

the expected degree of ground settlement.
13
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data (e.g., geological and geotechnical information, groundwater level) and historical liquefaction events,

enabling verification of the tool chain's application.

Are there
preparatory Isa Multi-
processes? trigger hazards?
needed?

Predisposing :
Water Table < 15'm deep
RReR

Effects:
Process severity class map
Geology. ] Qualitative
Earthguakes Magnitude >'6 Quantitative (Liguefaction

c oo Potential Index)
Semiquantitative
(Susceptibility)

Geotechnical properties

Expected PGA'> 019

Past events o0

Triggers:
Earthquake
Post-trigger

Figure 4. Tool chain developed under the RETURN project for liquefaction analysis.

3.2 Level I for soil liquefaction susceptibility

Liquefaction susceptibility can be evaluated in four levels as reported in Table 1, but to define
susceptibility in large areas, levels 1 and 2 are the most suitable. In particular, knowing the geological and
geomorphological characteristics of the area and the groundwater table depth, it is possible to develop a
basic susceptibility map (level 0) also called  “screening map” to assess which macro sectors are more
susceptible than others. Youd and Perkins (1978) analysed the liquefaction susceptibility of various types
of soil deposits by assigning a qualitative susceptibility score based on general depositional environment
and geologic age of the deposit. The relative susceptibility degree of Anderson et al. (2006) shown in
Figure 3 indicates that unconsolidated soils recently deposited such as Holocene age river channel,
floodplain, and delta deposits have high to very high liquefaction susceptibility. Such deposits as an
alluvial fan and plain, beach, glacial till, talus, residual soils, tuff and compacted fill are, in general, not
susceptible to liquefaction. For each deposit type, the liquefaction susceptibility is decreasing by the ages,
from young (< 500 years) to old (Pre-Pleistocene), except for the loess, which is always susceptible to
liquefaction during strong earthquakes no matter the age is of Holocene or Pleistocene. The Holocene
sediments are more susceptible to liquefaction than the Pleistocene ones, and the Pre-Pleistocene

sediments are rarely susceptible.

According to Youd and Perkins (1978), and considering the water table depth, the susceptibility

of level 0 was performed using the “if/then” logic scheme (Figure 5).
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flood/alluvial plain, beach plain and lacustrine of pre-Pleistocene age and the water table is < 15 meters
deep. Susceptibility is medium if deposits belong to Holocene floodplain, beach or delta/fan-delta or
Pleistocene lacustrine with water table < 15 meters, while a high degree of susceptibility occurs if the

deposits belong to Holocene river channel and pyroclastic soils or Pleistocene/Holocene loess.

Liquefaction events in mountain, foothill and hill environments do not occur, as well as in plain

areas where the PGA is very low (< 0.01g) or the water table depth is > 15 meters, then the susceptibility

results null.
Susceptibility screening level 0
IF IF IF
Geology/Geomorphology Geology/Geomorphology Geology/Geomorphology
Pre/Pleistocene River Holocene Flood Plain Holocene river Channel
Channel OR OR
OR Holocene Beach Holocene Pyroclastics
Pre/Pleistocene Flood Plain Plain/Delta/fan-delta OR
OR OR Pleistocene/Holocene
Pre/Pleistocene/ Holocene Pleistocene lacustrine Loess
Alluvial fan/Plain
OR
Pre/Pleistocene Beach Plain
OR
PrePleistocene lacustrine
AND AND AND
| Water table <15 m | ’ Water table <15 m | | Water table<15m |
THEN THEN THEN

| Susceptibility = Low | | Susceptibility = Medium ‘ _

IF Mountains OR Foothills, OR Hills OR PGA < 0.01 gOR Watertable>15m

‘ Susceptibility = None |

Figure 5. Scheme to evaluate the susceptibility liquefaction of level 0.

Taking into account also the PGA, which can be considered both a predisposing and a triggering
factor, the scheme for assessing liquefaction susceptibility of level 1 was developed. According to NTC
(2018), the value of PGA must be greater than 0.1g to have liquefaction. Thus, by intersecting the
geological and geomorphological features of the deposits, the depth of the water table and the PGA,
susceptibility classes from low to very high are obtained. In particular, as shown in Figure 6, susceptibility
is low if pre-Pleistocene/Pleistocene deposits with water table depth less than 15 meters and low PGA

values are observed. The level of susceptibility is very high when Holocene river channel or pyroclastic
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soils or loess deposits are present together with a water table depth < 15 meters and PGA values > 0.1g.

IF

IF

Susceptibility screening level 1

IF

IF

IF

IF

Geology/Geomorphology Geology/Geomorphology Geology/Geomorphology Geology/Geomorphology || Geology/Geomorphology || Geology/Geomorphology
Pre/Pleistocene River Pre/Pleistocene River Holocene Flood Plain Holocene Flood Plain Holocene river Channel Holocene river Channel
Channel Channel OR OR OR
OR Holocene Beach Holocene Beach Holocene Pyroclastics Holocene Pyroclastics
Pre/Pleistocene Flood Plain Pre/Pleistocene Flood Plain Plain/Delta/fan-delta Plain/Delta/fan-delta OR
OR OR OR OR Pleistocene/Holocene Pleistocene/Holocene
Pre/Pleistocene/ Holocene Pre/Pleistocene/ Holocene Pleistocene lacustrine Pleistocene lacustrine Loess Loess
Alluvial fan/Plain Alluvial fan/Plain
OR OR
Pre/Pleistocene Beach Plain || Pre/Pleistocene Beach Plain
OR OR
PrePleistocene lacustrine PrePleistocene lacustrine
AND AND AND AND AND AND

| Water table <15 m H Water table < 15m “ Water table <15 m ‘ \ Water table <15m H Water table < 15m “ Water table < 15m l

AND AND AND AND AND AND
| PGA<0.1¢ H PGA>0.1g || PGA<0.1g H PGA>0.1¢g H PGA<0.1g || PGA>0.1g |
THEN THEN THEN THEN THEN THEN

[ Susceptibility=Low || Susceptibility = Medium || Susceptibility = Medium \___

IF Mountains OR Foothills, OR Hills OR PGA < 0.01 g OR Water table > 16 m

| Susceptibility = None |

Figure 6. Scheme to evaluate the susceptibility liquefaction of level 1.

3.3 Level 2 for soil liquefaction susceptibility

Usually in engineering practice, liquefaction triggering assessment is carried out using the semi-
empirical stress-based analysis (level 2). With this approach, a factor of safety FS(z) is defined for free-
field conditions (i.e. without buildings and structures) as the ratio between the normalized shear stress
required to induce liquefaction (CRR=soil capacity) and the normalized equivalent stress induced by the
design earthquake (CSR=demand) (Boulanger and Idriss, 2014; Seed and Idriss, 1971):

CRR(z) _ CRRM=7,5,o"v=1

- FS(@) = CSR(z) CSR

- MSF - K, - K, Eq. 1

where soil capacity CRRm=75, o'v =1 is calculated with reference to a seismic event of magnitude
M=7.5 and a vertical effective stress state of one atmosphere (101 kPa). The parameter MSF (Magnitude

Scaling Factor) is a factor accounting for the effect of earthquake magnitude, and the two corrective

coefficients K, and K., respectively take into account the effects of vertical stress and of a possible pre-
existing static shear stress on horizontal planes (e.g. sloping ground or state of stress under existing
structures) (see Figure 3 for their expressions). Literature data (e.g. Tomasello and Porcino (2022); Vaid

et al. (2001) indicate that, in loose or medium dense sands (D < 50%), pre-existing shear stresses reduce

soil capacity. In this density range, from a practical point of view, this detrimental effect can be considered
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assuming K. =0.8.

Liquefaction resistance can be evaluated interpreting the results of in-situ or laboratory tests.

Usually, in situ tests are more commonly adopted for the following shortcomings of laboratory tests:

1) it is extremely difficult to retrieve granular undisturbed samples on site: therefore, tested

specimens may not represent the true in situ conditions;

i) laboratory tests are carried out using constant amplitude cycles; as a consequence, for their
interpretation a correlation has to be introduced between the irregular seismic action and the
equivalent number of constant amplitude cycles, N;

iii) even if using very sophisticated laboratory apparatuses, the stresses applied in laboratory

cannot represent the true stress path experienced by the soil in situ during the earthquake.

Therefore, the values of CRR are generally derived from historic-empirical correlations based on
CPT and SPT results (Boulanger and Idriss, 2014) as:

Ry onms = e (B35 ()~ (%) + ()~ 2) £ 2
- CRRy=7501=1 = €Xp (Nij_"l” + (”11"2“;“)2 - (”;36_"6”)3 + ("’;%)4 - 2.8) Eq. 3

where geines and (N1)socs are respectively the normalized values of the tip resistance (CPT) and the
number of blows (Nspt) corrected for the finest content (FC, defined as the percentage by weight passing

at the 0.075 mm sieve).

It has to be emphasized that Eq. 2 and Eq. 3 have no mechanical origin and are just analytical
correlations empirically set up to separate historical data of liquefied from non-liquefied cases in a
capacity vs. demand plane. Generally, they correspond to a conservative lower bound of the observed

values of CRR, and thus lead to a conservative estimate of FS(z).

With the semi-empirical approach, the stress state induced by the seismic action is estimated through the
knowledge of the maximum horizontal acceleration expected at ground level (PGA, amax) according to a
well-established empirical procedure, or as a(z) at the generic depth of interest, if the results of local
seismic response analyses are used. Typically, with this approach the cyclic stress ratio CSR is calculated
as (Seed and Idriss, 1971):

- CSR(z) = 0.65 %:T”rd Eq. 4

v
where o, and o', are the total and effective lithostatic stress at the generic depth (z), amax is the peak

value of the expected horizontal acceleration at the surface, g is the earth’s gravitational acceleration and
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rq is a reductive factor of the acceleration to take into account the deformability of the soil column and
can be estimated empirically or calculated numerically through a local seismic response analysis. In this
calculation, if remediation actions have to be implemented, the effects of ground improvement should be

taken into account considering their effect in terms of stiffness increase.

3.3.1 Methods based on CPT

The use of in-situ testing is the dominant approach in engineering practice for the quantitative
evaluation of liquefaction potential. To assess the liquefaction resistance of soils, it is necessary to
calculate two variables: the seismic demand on a soil layer, expressed in terms of CSR (Cyclic Stress
Ratio), and the soil’s capacity to resist liquefaction, expressed as CRR (Cyclic Resistance Ratio). The
models proposed by Seed and Idriss (1971), Seed and Peacock (1971), lwasaki et al. (1984) and Robertson
and Wride (1998) are widely used to predict potential liquefaction using field data. In addition, Youd and

Idriss (2001) provided a detailed review of various field methods for assessing soil liquefaction potential.

The CPT (Cone Penetration Test) has become one of the most common and economical exploration
method. The cone penetrometer is pushed into the ground at a standard rate of 2 cm/sec, and data is
recorded at regular intervals (typically every 2 or 5 cm) during penetration. The results provide excellent
stratigraphic detail and repeatability, provided proper attention is paid to equipment calibration
(transducers and electronics). It is a versatile investigation method that can be used to determine soil

materials and their properties within a soil profile.

To evaluate soil liquefaction potential, it is essential to determine soil stratification and the in-situ

soil condition.

The simplified method by Robertson and Wride (1998) to estimate the cyclic shear stress (CSR)
was developed by Seed and Idriss (1971), based on the site's peak ground acceleration, as follows:

CSR = ’—0 = 0.65(MWF) (Z—Z) (“";%) Ty Eq. 5

[oF

MWF = M?%6/173 Eq. 6

where MWEF is the magnitude weighting factor, and M is the earthquake magnitude, commonly taken as
M =7.5. Seed et al. (1985) also developed a method for estimating the Cyclic Resistance Ratio (CRR) for
clean sands and silty sands based on CPT, using normalized penetration resistance. The CPT-based
liquefaction correlation was re-evaluated by Idriss and Boulanger (2006) using compiled data from
Shibata and Teparaksa (1988), Kayen et al. (1992), Boulanger (2003) and Moss et al. (2003).The
Magnitude Scaling Factor (MSF) is a parameter used in evaluating liquefaction potential to account for

the effect of earthquake duration, represented by its magnitude. Specifically, this factor is used to adjust
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the calculated CSR to make the liquefaction potential estimate applicable to earthquakes of different
magnitudes than those considered in the original tests.

Seed and Idris (1982) introduced a correction factor called the Magnitude Scaling Factor (MSF),
which can be used to shift CRR-based curves up or down, depending on the earthquake magnitude. Figure
7 shows curves proposed by various authors for different magnitudes.

4.5 I
‘\ —&— Seed and Idriss, (1982)
4 \ Ridnge of recommended | —#— Idriss
35 ; MSF from NCEER x Ambraseys (1985)
L e x Workshop ¢ Arango (1996)
z 3 ol ¢+ Arango (1996)
. ‘%Z |\ —+— Andrus and Stokoe
g 25 % A Youd and Noble, PL<20%
= \ A Youd and Noble, PL<32%
S| 27 4 Youd and Noble, PL<50%
; 15 d \
E |
“ 05
0
54 6.0 i.U 8.0 5.0

Earthquake Magnitude, My

Figure 7. MSF obtained from different sources Youd and Idriss (2001).

They also developed a set of MSFs based on the average number of loading cycles for various
earthquake magnitudes and lab test results. The MSF was defined as:

102.24
MSF = (W) Eq 7
The revised scaling factors were higher than the original for magnitudes < 7.5 and slightly lower
for magnitudes > 7.5. Compared to the original factors, the revised MSFs result in lower calculated

liquefaction hazard for M < 7.5, but higher hazard for M > 7.5. These revised factors were suggested as

lower bounds by participants at the NCEER (National Center for Earthquake Engineering Research)
workshop.

Ambraseys (1988) analyzed liquefaction data and calculated cyclic stresses at sites that did or did
not experience liquefaction, based on N60 values. From this, he developed an empirical equation defining
CRR as a function of N60 and moment magnitude. For M < 7.5, the MSFs proposed by Ambraseys are

significantly higher than those by Seed and Idris (1982), and for M > 7.5, significantly lower, making
them more conservative.

Andrus and Stokoe (2000) developed MSFs by drawing boundary curves for sites where surface
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6 and > 7.5 were extrapolated using the following equation:

MSF = (’:’_—V;)_Z'SG Eq. 8

For M < 7.5, the MSFs proposed by Andrus and Stokoe (2000) are close to those proposed by
Ambraseys (1988). For M > 7.5, the MSFs by Andrus and Stokoe are slightly lower than the revised MSFs
by Seed and Idris (1982).

Youd and Noble (1997) used a probabilistic and logistic regression analysis of historical data from
sites that did or did not report liquefaction in past earthquakes. They defined three MSF sets for different

magnitude intervals and various probabilities of liquefaction (PL):

B 3.817

P, < 20% MSF = | for M,, <7 Eq. 9
B 3.7417

P, < 32% MSF = |2 for M, <7 Eq. 10
r 4.211

P, < 50% MSF = |2 for M,, < 7.75 Eq. 11

Figure 8 provides MSF values by several Authors.

Arango (1996) Youd and Noble (1997b)

Seed and Andrus and
Magnitude, Idriss Ambraseys Distance Energy Stokoe

M (1982) Idriss® (1988) based based (1997) P, < 20% P, < 32% P, < 50%
(1) (2) (3) 4) (5) (6) (7) (8) (9) (10)
5.5 1.43 2.20 2.86 3.00 2.20 2.8 2.86 3.42 4.44
6.0 1.32 1.76 2.20 2.00 1.65 2.1 1.93 2.35 2.92
6.5 1.19 1.44 1.69 1.60 1.40 1.6 1.34 1.66 1.99
7.0 1.08 1.19 1.30 1.25 1.10 1.25 1.00 1.20 1.39
7.5 1.00 1.00 1.00 1.00 1.00 1.00 — — 1.00
8.0 0.94 0.84 0.67 0.75 0.85 0.8? — — 0.73?
8.5 0.89 0.72 0.44 — — 0.65? — — 0.56?

Note: ? = Very uncertain values.

*1995 Seed Memorial Lecture. University of California at Berkeley (I. M. Idriss. personal communication to T. I.. Youd. 1997).

Figure 8. MSF values by several Authors (Youd and Idriss, 2001).

Figure 9 summarizes the steps necessary to calculate FS(z) with the semi-empirical stress based
approach (Boulanger and Idriss, 2014; Idriss and Boulanger, 2008).

It has to be highlighted that, even though the normalized values gcines and (N1)socs take into account
the fines content, sometimes they may lead to a misprediction of soil capacity: this is for instance the case
of pyroclastic soils, which may have a relevant fines content FC with no plasticity (which means that the
normalized resistance overestimates the beneficial effect of FC on CRR), and their fragile grains may be
easily crushed by the testing tool (especially during SPT) (which means that soil shear strength may be
underestimated). The combined effect of these two peculiarities cannot be theoretically assessed, but some

experimental evidence (i.e. Anderson et al. (2019)) indicate that the use of the semi-empirical stress based
20
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approach for pyroclastic soils is largely conservative, because of an overall underestimate of soil capacity.

Moreover, it should be stressed that the simplified approach just described does not consider
peculiar site mechanisms that may affect the overall behaviour, like for instance the so called “system
response” in layered deposits, smartly identified by Cubrinovski et al. (2019) in well documented case

histories in Christchurch.
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Figure 9. Procedure to calculate FS(z) based on the knowledge of (a) gc1Ncs or (b) (N1)60cs (Flora et al., 2023).

This mechanism, that can be quantitatively taken into account only using fully coupled advanced
dynamic analyses, is related to the hydraulic interaction between contiguous granular layers, i.e. to the
change in their pore pressure regime during the earthquake (or immediately after it) caused by transient
inter-layer flows that may lead to the liquefaction of layers initially far from it.

FS values lower than 1 imply the liquefaction susceptibility of site. In this case, the potential
consequences of liquefaction can be evaluated with the integral response of the deposit, through the
simplified liquefaction index LSN (Tonkin and Taylor, 2012), defined as:

LSN = 1000 f,°  2dz Eq. 12

where z is the depth in meters and ¢, is the post-liquefaction volumetric reconsolidation strain (entered as
a decimal) that can be calculated according to existing charts (see (Ishihara and Yoshimine, 1992). Degree
of damage can be estimated as:

- 0<LSN<20: minor;

- 20<LSN<40: major;

- LSN>40: severe.

It is worth mentioning that LSN is not the only indicator proposed in literature, and many alternatives
have been suggested in time. From a historical point of view, the first (and most popular) integral indicator
is the Liquefaction Potential Index, LPI (Iwasaki et al., 1984), which represents a measure of the
vulnerability of a site as a single value, ranging between 0 (very low risk) and values over 15 (very high

risk), defined as:

Lpi = [*°

o F(z)-W(z)dz Eg. 13

where z is the depth in meters, while F(z) and W (z) are respectively:

F(z)={1—FS for FS <10 for FS =1
Eq.14  W(z) =10 - 0.5z
Eqg. 15

in which FS is computed by Eqg. 1.
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3.3.2 Assessment of the liquefaction-induced settlements

In sandy soil deposits, effective stresses can approach zero, and as a result, the soil behavior shifts
from that of a solid to that of a fluid, triggering liquefaction. When liquefaction occurs, significant
settlements of shallow foundations and other engineering structures can take place. In many recent strong
earthquakes (e.g., New Zealand, 2011; Japan, 2011; Emilia-Romagna, 2012; Turkey, 2023), liquefaction-

induced phenomena caused considerable damage to the built environment.

In practice, earthquake-induced building settlements are quantified using empirical procedures
developed by considering one-dimensional (1-D) volumetric consolidation settlements under "free-field"
conditions, ignoring the presence of structures at the ground surface (e.g., (Ishihara and Yoshimine, 1992;
Tokimatsu and Seed, 1987)). In other words, only volumetric deformations are considered, mainly due to

the dissipation of excess pore water pressure accumulated during the seismic sequence.

Settlements (w) can be estimated using the following equation:
w= Z{=1 €21 Az; Eq. 16

where & s the post-liquefaction volumetric strain for the i-th soil layer; Azi is the thickness of the
i-th layer; and j is the number of soil layers.

Methods for estimating liquefaction-induced settlements aim to predict how much the ground will
subside due to soil liquefaction during seismic events. These methods mainly focus on the behavior of
loose and saturated soils (often sands and silts) that lose strength when shaken. Approaches range from
simple empirical ones—based on field test data and past experience—to more complex numerical models

that simulate soil behavior under seismic conditions.

Empirical methods are easy to apply but may lack accuracy under varying geotechnical conditions,
while analytical, stress-strain, and probabilistic methods offer greater precision but require more detailed
input data and computational resources. The choice of method depends on the site's complexity, data
availability, and the level of accuracy required for engineering analysis. Below are the most commonly

used methods.

Probabilistic methods incorporate uncertainty and variability in soil properties, seismic loading,
and site conditions. They provide estimates based on probability distributions rather than deterministic
values. These methods are useful in risk assessments and help account for the variability in seismic and
soil parameters. The Monte Carlo approach uses statistical methods to generate numerous possible
liquefaction and settlement outcomes based on variable inputs (e.g., soil density, seismic intensity). The
results are presented as probability distributions of settlements. Probabilistic Seismic Hazard Analysis
(PSHA), often combined with Monte Carlo methods, helps account for the variability and uncertainties in
earthquake characteristics and their impact on liquefaction-induced settlements.
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In this project, empirical approaches, which rely on correlations derived from historical
liquefaction events and field test data are adopted. These methods use simplified parameters to estimate
settlement based on past experiences. They are relatively straightforward and easy to apply, though
sometimes limited by their dependence on specific case studies and conditions. Common empirical

methods include:

Tokimatsu and Seed (1987). This widely used method relates the results of Standard Penetration
Tests (SPT) or Cone Penetration Tests (CPT) to the amount of post-liquefaction settlement. It involves
determining the factor of safety against liquefaction and using empirical curves to estimate settlements

based on soil density and the Cyclic Stress Ratio (CSR).

Ishihara and Yoshimine (1992). This method provides an empirical relationship between the
vertical deformation induced by liquefaction and the factor of safety, with settlement calculated by

multiplying the vertical strain by the thickness of the liquefied layers.

Simplified analytical methods use a combination of empirical correlations and analytical
equations. They often involve calculating the Cyclic Stress Ratio (CSR) and comparing it with the Cyclic
Resistance Ratio (CRR) of the soil to estimate the triggering of liquefaction. Once the triggering is
assessed, settlements are estimated using volumetric or strain-based deformation models. Examples

include:

Idriss and Boulanger (2008). This method refines previous empirical approaches by incorporating
updated data on seismic hazard and soil characteristics, and provides more detailed guidelines for

estimating liquefaction triggering and the resulting soil deformation.

Zhang et al. (2002). This CPT-based method estimates post-liquefaction settlements using cone
tip resistance to evaluate liquefaction potential and the corresponding settlements in each soil layer. The
authors correlated the volumetric deformations induced by the dissipation of excess pore water pressure

with FS (Factor of Safety) and qc1Ncs (normalized cone penetration resistance) as shown in Figure 10.
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Figure 10. Relationship between post-liquefaction volumetric strain and the clean sand equivalent normalized
CPT tip resistance for different factors of safety (FS).

The equations are the following:

if FS<0.5 &, =102"(qeines) %% for 33 < qeines < 200
if FS=0.6, &, =102" (qeines) %% for 33 < qeines < 147
if FS=0.6, &, =2411" (qeines) **° for 147 < qeines < 200
if FS=0.7, &, =102" (qeines) %% for 33 < qeines < 110
if FS=0.7, & =1701"(qeines) **? for 110 < qeines < 200
if FS=0.8, &, =102 (qeines) *® for 33 < qeines < 80
if FS = 0-8; &y = 1690 - (qclncs)_1'46 fOT' 80 < Acincs <200
if FS=09, & =102 (qe1nes) % for 33 < qeines < 60
if FS = 0-9; &y = 1430 - (qclncs)_lAS fOT' 60 < Acincs <200
if FS = 1.0, &y = 64 - (qclncs)_o'93 fOT 33< Qcines < 200
if FS=11, &, =11"(qeines) %% for 33 < qeines < 200
if FS = 1-2; &y = 9.7 - (qclncs)_0'69 fOT 33 < qcincs < 200
if FS =123, & = 7.6- (qclncs)_o'71 fOT 33 < Qcines = 200
if FS=20, =0 for33<qcnes <20

3.4 Application of the tool chain in Emilia Romagna (North Italy)

In order to apply the tool chain for liquefaction phenomena, a study area in Emilia Romagna
Region has been chosen. Indeed, in May 2012, Italy was struck by an important seismic sequence. The
main shock occurred on 20 May 2012 (Mw=6.1) and caused extensive liquefaction phenomena. The part
of the country which was affected by these violent shakes was the area of the river Po Valley, in the
foreland basin of two mountain chains constituted by the Alps and the northern Apennine, in the Emilia-
Romagna Region (Northern-Italy). Since 19 May 2012, Emilia Romagna and surrounding parts of VVeneto
and Lombardia are hit by a long seismic sequence characterized by about two thousand of shakes. Many
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buildings collapsed and 27 victims were recorded. The epicentre of the 20 May event (44.89°N latitude

and 11.23°E longitude) was located between the provinces of Modena and Ferrara, while the hypocentre
was at a depth of 6.3 km, owing to that it is considered a shallow earthquake (Lai et al., 2015). This event
was extremely interesting in Italian seismic literature. It is due to the rarity of so extended soil liquefaction
phenomena in Italy. Although Italy is a seismic country, liquefaction occurred only in restricted areas and
owing to that the induced damage was generally limited. The most evident effects of liquefaction
phenomena following the 2012 earthquake were found in San Carlo (Municipality of Sant’ Agostino) and
Mirabello, whose subsoil was characterized by alluvial sediments of different depositional environment,
which consists of alternated layers of silty-clayey deposits and sandy soils mainly constituting ancient
rivers banks (Chiaradonna et al., 2018). The effects of liquefaction induced by the 2012 Northern Italy
earthquake, have been recorded and reported in several research works (Lai et al., 2015; Lombardi and
Bhattacharya, 2014; Sciarra et al., 2012; Vannucchi et al., 2012). As an example, some photos have been
reported in Figure 11 (Vannucchi et al., 2012), where the typical effects of liquefaction may be noted,
such as sand boils, vents, sinkholes, craters, surface ruptures, extensional fissures. Many open spaces, as
courtyards, gardens and roads, were completely covered by the ejected sand, mud and water.
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Figure 11. Liquefaction evidence at San Carlo: main roads covered by grey silty sand ejected from the ground in
San Carlo (a); garage (b); sand boils (c) and a private house (d) (Vannucchi et al., 2012).

The study area for the application of liquefaction tool chain was selected considering a sector with
the highest concentration of events occurred during the 2012 earthquake. In addition, data for develop the
tool chain were collected, such as geological and geotechnical investigations, water table depth, and PGA
values. In particular, the geological and geotechnical investigations were obtained from the database
created by the Geology, Soil, and Seismic Area of the Emilia-Romagna Region. The water table depth
values were obtained by interpolating the average groundwater levels from point data downloaded from
the ARPAE database (Regional Agency for Prevention, Environment, and Energy of Emilia-Romagna).
This data refers to the monitoring conducted from 2009 to 2022 at the underground water body stations
belonging to the regional network for environmental quality. Finally, the PGA (Peak Ground
Acceleration) values related to the 2012 Emilia earthquake with a magnitude of 5.8 were obtained from

the INGV archive. By using these data the application and validation of the tool-chain was carried out.

3.4.1 Results of Level 1 susceptibility

The susceptibility map of level 0 was elaborated applying a GIS intersection of
geological/geomorphological and the water table maps following the logical scheme of Figure 4. In
particular, by means of some studies of literature (Civico et al., 2015; Minarelli et al., 2022; Priolo et al.,
2012; Stefani et al., 2018) and boreholes available in the study area, a map was drowned complying with
the Youd and Perkins's classification (Figure 12). The groundwater table level was obtained by
interpolation of water table depth point values among the monitoring database of ARPAE (Regional

Agency for Prevention, Environment and Energy of Emilia-Romagna) stations (Figure 12).

On the other hand, the susceptibility map of level 1, was elaborated applying a GIS intersection of
geological/geomorphological, the water table and PGA maps. The latter is related to the 2012 Emilia
earthquake with a magnitude of 5.8 and shows that the liquefaction evidence is within the range of 0.18 -

0.30 g. Few points are present for PGA values less than 0.18 g (Figure 13).

— Water table 2
Youd & Perkins (1978) classification|e|
Holocene flood plain §ie

| Holocene river channel  [Shs \ WA -

Figure 12. Geological/geomorphological setting

following Youd & Perkins (1978) and mean water
table depth.

: 2
I 0.24-0.30 -

Figure 13. PGA map referred to 2012 Emilia
earthquake with magnitude of 5.8

The susceptibility maps of levels 0 and 1 for liquefaction phenomena was shown respectively in
27
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Figure 14 and Figure 15. The water table depth of the area is always less than 15 meters, therefore in the
first scenario the result class zonation depends on the distribution of Holocene flood plain and river
channel deposits, while in the second one it is evident also the contribution of the PGA. The majority of

liquefaction events fall within the high and very high susceptibility class.

TERREDELIRENO)

Susceptibility (LEVEL 0) v 5 o
Medium ST L i e e NS 0 2 4km
IO Very High i ‘ :

i High A, Do ] s 58
Figure 14. Susceptibility map of level 0 and Figure 15. Susceptibility map of level 1 and
liquefaction evidence. liquefaction evidence.

In order to obtain a liquefaction map based on the semi-empirical stress based approach of Idriss
and Boulanger (2008), (Boulanger and Idriss, 2014), the geotechnical investigations (CPT or SPT) are
necessary. For the study area more than two thousand points representing CPT investigations are available

that could be interpolated and used to elaborate a susceptibility map of level 2.

A first attempt was made estimating the LPI index for 12 CPT points localized neighboring the
high concentration of liquefaction events and close to borehole with evidence of sand layers interbedded

to silt and clay (Figure 16).

Following the procedure described in figure 3 and using the equation 5 the LPI (Liquefaction
potential index) was estimated. For 11 examined points the LPI values ranged from 6.8 and 14 with high
potential failure index; while one data shows LPI value of 21.9 with very high potential failure index
(Figure 17).
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Figure 16. CPT investigations distribution for LPI

. . Figure 17. LPI index classes distribution
index evaluation

3.4.2  Results of Level 2 Susceptibility
In the area selected for the application of the toolchain, 2035 CPTs are available, and for each of

them, the depth of the groundwater table was calculated. Subsequently, using a script, it was possible to
evaluate for some of them the Factor of Safety (FS) at each depth and the LPI (Liquefaction Potential

Index) representative of the entire vertical, as developed by Iwasaki et al. (1984).

A total of 203 CPTs were processed, of which 131 were representative of liquefiable sandy layers,
and 72 were located in areas without sandy layers and therefore not suitable for liquefaction assessment.

Figure 18 shows an example of a processed CPT, illustrating the presence of liquefiable and non-

liquefiable layers and the variation of the Factor of Safety along the vertical axis z.

FS [-]
1 15 2 25 3 35 4 45 5

(=]

.
| | |
LI N B B O B B L B B B

12

Sabbie Ghiaiose

)
Miscele di Sabbie
Terreni Organici

14

Figure 18. Representation of the liquefiable and not-liquefiable layers and their FS along the z profile.

Figure 19 shows the spatial distribution of the entire CPT dataset available in the test area, as well
as those used for the calculation of the factor of safety and settlements. Specifically, the blue points
indicate CPTs that are not suitable for liquefaction assessment because they are located in areas where the
stratigraphy is predominantly characterized by clayey layers, with thin or absent sandy strata. The green
dots indicate the CPTs that were processed, because they are located in areas with potentially liquefiable

sandy layers. Finally, the grey points represent the CPTs that will be processed at a later stage.
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@ Other CPT
4 CPT processed
4 CPT not suitable

Figure 19. Spatial distribution of the available CPT data in the test area, highlighting processed and unprocessed
data for liquefaction assessment.

For the processed data, the Liquefaction Potential Index (LPI) and settlements were calculated
considering four reference scenarios, obtained by varying two of the three factors that influence the

phenomenon—namely, the preparatory conditions and the trigger.

In the first case, the preparatory factor considered was the variation in the groundwater table depth,
ranging from the ground surface (depth = 0) to values obtained from an average map of groundwater level
contours, based on monitoring carried out between 2009 and 2022 by the Emilia-Romagna Region.

As for the triggering event—represented by an earthquake—the variation parameter considered
was the PGA (Peak Ground Acceleration). Specifically, the adopted values follow the macro-seismic
classification of Italy (NTC, 2018), which divides the country into different seismic zones based on risk,
classified from Zone 1 (highest risk) to Zone 4 (very low risk). Each zone corresponds to a specific PGA

value:

- Zone 1: PGA > 0.25 g High seismic hazard. Earthquakes can be very strong and frequent;

- Zone 2: 0.15 g <PGA < 0.25 g Medium-high hazard. Earthquakes can be intense but less frequent;

- Zone 3: 0.05 g <PGA <0.15 g Moderate hazard. Earthquakes may occur but are generally less intense;

- Zone 4: PGA < 0.05 g Low seismic hazard. Earthquakes are rare and of low intensity.

For simplicity, the studied values refer to Zone 1 and Zone 2, as the analyzed process requires a
high-energy earthquake for triggering. Therefore, the proposed analysis of the Liquefaction Potential
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Index (LPI) was carried out following four scenarios:

e Scenario 1 (IL_1):
Groundwater depth: average depth values from 2009 to 2022

PGA: 0.15 g

e Scenario 2 (IL_2):
Groundwater depth: average depth values from 2009 to 2022

PGA: 0.25¢

e Scenario 3 (IL_3):
Groundwater depth: 0

PGA: 0.15 g

e Scenario 4 (IL_4):
Groundwater depth: 0
PGA:0.25¢

Considering the four scenarios, the Liquefaction Potential Index (LPI) was calculated for each
investigation by modifying both the preparatory factor (groundwater depth) and the triggering factor
(PGA). Figure 18 shows the spatial distribution of LPI values for each scenario (IL). It is evident that from
Scenario 1 (IL_1) to Scenario 4 (IL_4), the conditions worsen, as the groundwater table is assumed to be
at the surface (IL_3 and IL_4), or the PGA increases (IL_2 and IL_4), as shown in Figure 20.

JLPI (IL_2)

0o < None (LPI=0)

% < ® Low(0<LPI<5)

® High (5<LPI<15)

® Extremely high (LPI > 15)|
e Other CPT

&|LPI(IL_1)

O None (LPI=0)

°l ® Low (0<LPI<5)

® High (5 <LPI=<15)

® Extremely high (LPI > 15)
¢ Other CPT
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Figure 20. Spatial distribution of the Liquefaction Potential Index (LPI) for each scenario.

In addition to the spatial distribution of the points, a statistical analysis was also conducted on all
the processed data to evaluate the variability, even if only partial. Figure 21 shows the statistics related to
the LPI values and a boxplot for each scenario. One can observe how the variability of the data changes
from Scenario 1 to Scenario 4, with a noticeable increase in Scenario 4. In fact, the standard deviation
rises from 3.3 in Scenario 1 to 10.5 in Scenario 4. IL_2 and IL_3 are similar in terms of distribution and

variability.

The plots in Figure 22 show the distribution of LP1 classes for each scenario. The IL_1 chart shows
that most observations fall into the "low" category, with about 70% of the events. Fewer observations are
found in the "high" category, while the "very high™" category shows almost no occurrences, suggesting

that high liquefaction potential is rare in Scenario IL_1.

In the case of IL_2, the distribution shifts toward higher liquefaction index values. Most
observations fall into the "high" category, with nearly 40% of the cases, and a significant portion also falls
into the "very high" category, with about 30% of the observations. These results are due to the increase in
the PGA value (from 0.15 g to 0.25 g).

Finally, for Scenarios IL_3 and IL_4, there is a clear trend toward higher LPI levels, though in
distinct ways. IL_3 has most of its observations concentrated in the "high™ category, with a significant
number also falling under "very high.” In contrast, Scenario IL_4 shows an even more extreme
concentration in the "very high" category, where the majority of observations are found (about 80% of

occurrences).
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Figure 21. Statistics and boxplot of LPI.
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Figure 22. Frequency distribution of LPI classes in each scenario.

3.43 Settlements assessment

Based on the equations described in the previous section, settlements were evaluated for each
reference scenario (Figure 23). In particular, for Scenario 1, the distribution of settlement values shows
significant variation in the intensity of the phenomenon. Most points are characterized by very low
settlements (< 0.05 m), distributed across various areas, indicating that a large part of the territory does
not experience significant deformation. Settlements between 0.05 and 0.10 m are more widely distributed
and cover a broader area, while values between 0.10 and 0.20 m are less frequent and concentrated in
specific locations. Finally, high settlements represent a small portion of the overall distribution but

highlight the most critical zones, with values ranging between 0.20 and 0.40 meters.

In Scenario 2, the distribution of values is similar to that of Scenario 1, with settlement values
mainly concentrated in the low and very low categories, and a few localized areas showing more

significant settlements.

In Scenario 3, most points fall within the very low and low settlement categories (< 0.1 m);
however, compared to the previous maps, there is a slight expansion of areas with moderate and high
settlements, although still concentrated in specific regions.

Finally, Scenario 4 shows a relative increase in settlement, particularly for values below 0.1 m. A

distribution similar to the previous scenario (Scenario 3) is observed for values above 0.1 m.

The statistics in Figure 24 confirm the progressive increase shown in the maps from Scenario 1 to
Scenario 4. Furthermore, in this case, the data also show greater dispersion in Scenarios 3 and 4 compared

to Scenarios 1 and 2.
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Figure 23. Spatial distribution of the settlements for each scenario.
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Figure 24. Statistics and boxplot of the settlements.

3.4.4 Spatial analysis

In order to develop a simple methodology for spatializing the results within a specific area while
avoiding complex interpolation methods, a grid-based map was proposed in which each cell displays
averaged values from the available investigations. The grid size can be adjusted based on the study area’s
extent and the number of available investigations. In this case, a grid with 2x2 km cells was created. Figure
25 shows the number of available and processed CPTs within each grid cell.

Specifically, Figure 25c shows that the density of investigations is quite variable—some cells
contain fewer than 15 CPTs (in the northwestern area), while others have more than 15 investigations. As
for the processed CPTs, the map shows a concentration of data processing in the central areas, with higher
numbers (indicated in pink and purple) and lower values (yellow and orange) in the surrounding cells
(Figure 25d).
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Figure 25. Assigned Cell ID (a); CPT distribution on the grid (b); number of available CPTs in each grid cell (c);
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For all the processed data, minimum, maximum, and average values were calculated for each
liquefaction scenario, both for the Liquefaction Potential Index (LPI) and for settlement. However, for
spatial representation of the data, the average LPI valuesand the maximum settlement values were
selected, as calculated in Table 2. Figure 26 shows the distribution of average LPI values for the four

reference scenarios.

Figure 26a displays a scattered distribution of green cells (low LPI values) and red cells (high LPI
values) throughout the grid. Most low values are concentrated toward the central and northern zones,

while the high values are irregularly distributed. Gray cells indicate a lack of data.

In the map of Figure 26b, there is a significant presence of areas with high and extremely high
values for Scenario 2. These areas are particularly concentrated in the central and northern parts of the
grid. Light green squares, representing areas with absent or very low values, are more sparsely distributed.

Figure 26¢ shows a substantial presence of high and extremely high LPI values. Specifically, cells
with high LPI (red) are more widely spread, while cells with extremely high LPI (purple) appear in specific
central and southern areas. Low values (green) are less frequent but are clustered near the upper and central
parts of the map. This distribution highlights the effect of soil saturation on the liquefaction potential index
when setting the groundwater depth to field level (0 m).

Finally, Figure 26d shows a clear increase in LPI, with extremely high values more widespread
across the area and no low values present. This distribution of elevated values results from the worsening
of both preparatory and triggering parameters in Scenario 4, where the groundwater level is at zero and
PGA s 0.25g.

Table 2. Mean value of the LPI and maximum values of the settlements calculated for each cell.

ID [TOT [next|data IL1[IL2]IL3]IL 4 |SETTL 1[SETTL 2[SETTL 3[SETTL 4
cella | data | data | processed | mean | mean | mean | mean | max max max max
19 |1 1 13.64 | 18.16 0.082 0.082
31 |54 |53 |1 9.96 |16.45 0.097 0.106
3 |4 1 3 2.89 |16.76 |20.46 | 28.68 | 0.051 0.061 0.201 0.201
37 |84 83 |1 0.27 [10.51 |15.32 |27.11 | 0.011 0.054 0.155 0.171
42 |20 19 |1 11.14 | 21.04 0.106 0.114
46 |115 |105 |10 1.31 |11.49|17.53|29.11 |0.082 0.108 0.249 0.249
47 |39 32 |7 2.25 |18.34|22.75|35.80 | 0.114 0.124 0.339 0.341
48 |30 29 |1 0.15 |6.24 |7.09 |11.87|0.028 0.096 0.121 0.122

37

UNIVERSITA DEGLESTUDI DI NAPOLI



T Finanziato
* * .
2R dall'Unione europea

* gk

UNIVERSITA DEGLESTUDI DI NAPOLI

Ministero . . 2,
25 dell’'Universita . Italiadomani | -
> edella Ricerca - DI RIPRESA € RESILIENzA : FEDERICO I

NextGenerationEU

59 |32 27 |5 0.82 [10.96 | 14.41 | 22.77 | 0.006 0.025 0.143
60 |60 |49 |11 3 18.11 | 20.40 | 31.45 | 0.053 0.115 0.298
61 |40 31 |9 0.23 |[13.61 |13.85|24.85|0.012 0.051 0.230
62 |1 1 10.87 | 15.17 0.082
69 |52 51 |1 516 |[12.11 0.072
71 |14 12 |2 3.19 [13.32 | 16.52 | 24.33 | 0.055 0.056 0.190
75 (101 (94 |7 2.04 |13.73 |14.86 | 24.76 | 0.006 0.022 0.248
76 |10 9 1 8.87 [18.91 0.109
85 |11 10 |1 6.38 |18.41 [22.19 |31.97 | 0.100 0.105 0.171
89 |37 35 (2 0.06 (8.72 |11.13|19.35|0.015 0.084 0.178
90 (21 20 |1 13.71 | 27.45 0.151
93 (11 10 |1 14.47 | 19.09 0.094
94 |11 5 6 1.72 |10.18 [6.68 |15.56 |0.122 0.132 0.179
9% |12 11 |1 5.02 |18.11 | 20.55 | 32.19 | 0.030 0.036 0.204
98 |13 12 |1 1.13 |5.69 |7.91 |14.78|0.018 0.033 0.076
100 |13 12 |1 3.55 |20.48 [9.47 |33.36 |0.099 0.195 0.255
101 |5 4 1 11.54 | 27.93 | 28.01 | 45.45 | 0.263 0.287 0.328
103 |27 23 |4 1.07 |10.44 |8.93 |18.58 | 0.049 0.107 0.158
106 |6 5 1 6.67 |15.5 |11.13|18.81 |0.085 0.099 0.120
107 |8 4 4 7.81 [20.98 |12.82 |25.24 | 0.165 0.222 0.240
108 |15 14 |1 1.18 [6.97 |4.31 |14.050.023 0.058 0.072
109 |37 33 |4 1.14 |6.08 |4.46 |10.31 |0.028 0.059 0.074
110 |9 7 2 3.75 |11.2 [10.77|17.61|0.128 0.145 0.204
111 |11 10 |1 9.95 |[25.27 | 22.65 | 36.06 | 0.183 0.211 0.260
112 |54 53 |1 5.64 |(17.07 |17.55|27.26 | 0.126 0.149 0.189
113 |30 20 (10 3.75 |[18.06 | 15.87 | 31.25 | 0.302 0.339 0.388
115 |4 3 1 577 (17.71]18.1 |28.78 |0.131 0.156 0.183
118 |7 6 1 2,59 |12.88 (6.35 |19.6 |0.050 0.110 0.116
121 |8 5 3 5.08 [15.7 |13.22|23.28 |0.119 0.130 0.185
122 |7 3 4 3.39 [12.06 | 13.85|22.84 | 0.238 0.265 0.323
123 |10 6 4 4.33 |23.43|18.07 | 32.63 | 0.175 0.300 0.346
124 |11 10 |1 0.79 (755 |7.64 |18.33|0.034 0.070 0.123
125 |53 52 |1 16 |8.83 [6.04 |14.02|0.041 0.053 0.093
126 |17 15 |2 1.37 |11.21 [ 15.84 | 26.62 | 0.048 0.079 0.184
135 |15 13 |2 0.71 |11.56 (8.83 |21.18 |0.117 0.271 0.325
137 |6 5 1 0.05 |6.27 [4.33 |11.86|0.109 0.147 0.091
138 |8 7 1 13.8 |20.06 0.089
139 |7 5 2 0 439 |8.86 |[23.82)|0.009 0.059 0.210
147 |10 8 2 0.70 |5.74 [2.43 |10.09 |0.022 0.045 0.050
163 |3 2 1 0.76 |6.02 [9.68 |14.34|0.067 0.161 0.192
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Figure 26 Spatial distributionof the mean value of LPI for a) scenario 1; b) scenario 2; c) scenario 3; d) scenario

4.

Using the maximum settlement values, the spatial distribution was mapped for the four reference

scenarios. Figure 27a shows a relatively even pattern of settlements, with a prevalence of low values (in

light green and yellow). However, there are some areas in the central strip with values greater than 0.1 m.

In Figure 27b, there are more blue cells compared to the first scenario, with settlement values >
0.1 m concentrated in the same central strip and in some lateral areas. The increased density of cells with

higher settlement highlights the worsening conditions compared to Scenario 1.

In Figure 27c, the distribution of settlements < 0.1 m is similar to that of Scenario 2, but with a

broader extent, indicating increased severity of settlements in the same areas.

Finally, Figure 27d shows the worst-case scenario, with the highest settlement values (> 0.2 m).
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Figure 27. Spatial distribution of the maximum settlement value for a) scenario 1; b) scenario 2; ¢) scenario 3; d)
scenario 4.

3.4.5 Validation of the results
The validation phase of the study was conducted based on the historical liquefaction events

recorded in the days following the 2012 earthquake. Specifically, by intersecting the points of past
evidence with the susceptibility maps of Level 1 and Level 2, both the frequency of these events within

each map class and the predictive capacity via the ROC curve were calculated.

As for the Level 1 susceptibility, only the frequency of liquefaction points in each class was
assessed, for both the screening map (which considers only lithological groupings) and the map that also

incorporates PGA values.

In the first liquefaction susceptibility map (screening level) shown in Figure 14, only the
classes “medium” and “high” are present. Historical evidence is mostly distributed in the “high” class

(approximately 80%) and to a lesser extent in the “medium” class (around 20%).

In the Level 1 mapofFigure 15, which also includes PGA, the present classes

are “medium”, “high”, and “very high”. The liquefaction points are mainly distributed in the latter two,
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with frequency values of 20% and 80%, respectively.

These results highlight the potential to identify liquefiable areas using a simple-to-apply approach,

which can serve as a foundation for further investigations and detailed studies.

100

90
go O Level 1

O Screening level

70
60
50
40
30

20
0

Medium High Very high

Frequency (%)

Susceptibility class

Figure 28. Frequency distribution of historical liquefaction events across different Level 1 susceptibility classes.

As for Level 2 susceptibility, based on the frequencies of events in each LPI class, Scenario
1 in Figure 27a shows that most cases fall into the “low” category, with a low frequency of “high” values
and almost no “very high” cases, highlighting a discrepancy between the scenario and historical events.
This discrepancy can be explained by the particular nature of the 2012 earthquake, which triggered
liquefaction despite not being of very high intensity, but characterized by several close
aftershocks. Scenario 2 in Figure 27b shows an increase in frequencies for both the “high” and “very
high” categories. This trend is much more evident in the other two scenarios (3 and 4), where the

frequency of events in the “very high” category increases from 63% to 96% (Figures 27c and 27d).

The AUC table and ROC curve in Figure 30 confirm this trend, showing that the predictive
capacity of the model improves from the first scenario (AUC = 0.5) to the second (AUC = 0.67) and
stabilizes in the subsequent scenarios (AUC = 0.69 and 0.68, respectively). This suggests that, for accurate

settlement prediction, the most critical scenarios (IL_3 and IL_4) provide better sensitivity.

41



Finanziato L\I’liﬂjate_ro ita . .-:II lind UNIVERSITA DEGLE STUDI DI NAPOL
dall'Unione europea ell’Universita . taliadomani
NextGenerationEU = @ della Ricerca - B RFREEA ERESTienza FED ERICO “
IL 1 IL_2
100 100 -+
90 + 90 -
80 + 80 +
70 + 70 +
3 60 -+ 2 60 &
5 5
S 50+ S 50 -+
g g
L 40 + I 40 +
30 + 30 +
20 + 20 +
10 + 10 —+
0 } 0 } }
none low high low high very high
Failure Potential Failure Potential
a) b)
IL_3 IL_ 4
100 100
90 —+ 90 +
80 —+ 80 —+
70 —+
oy 3 60 +
o S
S S 50 +
o o
0 O
i L 40
30 +
20
10 +
0 I :
low high very high high very high
Failure Potential Failure Potential

c) d)
Figure 29. Frequency distribution of the liquefaction occurences in each LPI class for every scenario.
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Figure 30. ROC curve and AUC values values related to the LPI index.

As for the settlements, in Scenario 1, the distribution is balanced (Figure 31a), with a high
frequency in the 0.05-0.10 m range (about 40%) and a good representation also in the 0.10-0.20 m range
(around 30%). The extreme intervals, 0.0-0.05 m and 0.20-0.40 m, show a lower frequency. In Scenario
2 (Figure 31b), there is an increase in frequency for both the 0.10-0.20 m (about 50%) and 0.20-0.40
m (about 22%) ranges, at the expense of the lower classes. In Scenario 3(Figure 31c), the distribution
shifts significantly towards higher settlement values. The dominant range is 0.20-0.40 m, which represents
about 80% of occurrences, while other classes have much lower frequencies. Scenario 4 (Figure 31d)
reflects a similar situation to Scenario 3, where almost all cases (about 90%) fall into the 0.20-0.40

m range.

As for the predictive performance analysis, the progression of the ROC curves and the AUC values
shows a gradual improvement in the four scenarios: Settlement 1 (0.71), Settlement 2 (0.72),
Settlement_3 (0.74), and Settlement_4 (0.74). This indicates that the model becomes more accurate in
predicting critical cases as the data move toward more severe conditions. However, the last two scenarios

(Settlement_3 and Settlement_4) show the same AUC value, confirming their similarity (Figure 32).
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Figure 31. Frequency distribution of the liquefaction occurrences in every range of settlements for the 4

scenarios.
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Figure 32. ROC curve and AUC values for settlements.
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4 Regional Subsidence

4.1 Introduction

Subsidence has become a global issue, particularly in coastal areas (Herrera-Garcia et al., 2021,
Wu et al., 2022). Delta regions, which are representative of coastal areas, are home to over 300 million
people (Edmonds et al., 2020) due to their fertile soil, perennial aquatic food sources, and convenient
transportation and trade routes (Stanley and Warne, 1997). However, these regions are vulnerable to
subsidence caused by various natural and anthropogenic factors. Natural factors include tectonics, soil
compaction, and glacial isostatic adjustment, leading to long-term effects. Anthropogenic activities, such
as urbanization and exploitation of underground resources, typically produce short-term effects and
accelerate land subsidence (Higgins, 2015; Kuenzer et al., 2019; Syvitski et al., 2009). Subsidence in
deltas can lead to relative sea level rise, shoreline erosion, and wetland loss, posing serious threats to
coastal populations (Térngvist et al., 2008).Interferometric synthetic aperture radar (InSAR) is an
effective tool for high-precision, large-scale monitoring of surface deformation. It generates digital
elevation models (DEM) by calculating the phase difference between SAR images taken at different times
over the same area. Differential INSAR introduces external DEMs or uses data from multiple tracks to
obtain surface deformation information (Gabriel et al., 1989; Massonnet et al., 1993). Multi-temporal
INSAR (MT-InSAR) techniques mitigate atmospheric delay phase errors by leveraging atmospheric space
low-pass and temporal high-pass properties, estimating deformation information from permanent
scatterers. The measurement accuracy can reach centimeter or millimeter levels. The two classical MT-
INSAR techniques are permanent scatterers (PS) (Ferretti et al., 2000, 2001) and small baseline subsets
(SBAS) (Berardino et al., 2002). PS InSAR identifies PS points, such as buildings and exposed rocks,
using a single image as the reference, and is suitable for monitoring linear deformation. SBAS INSAR can
be extended to distributed scatterers (DS) points and is suitable for monitoring nonlinear deformation
(Chenetal., 2021).

INSAR techniques have been successfully applied to estimate delta subsidence and characterize its
spatial distribution in various regions, including the Nile Delta, Mekong Delta, Yellow River Delta, and
Po Delta (Becker and Sultan, 2009; Erban et al., 2014; Higgins et al., 2013; Teatini et al., 2011). Unlike
subsidence caused by human activities in inland cities, delta subsidence typically involves a rapid initial
phase followed by gradual stabilization, primarily due to the natural consolidation of deposits. In the Po
Delta, subsidence derived from ERS data follows a typical log-type consolidation process, consistent with
the Terzaghi consolidation subsidence curve (Teatini et al., 2011). In other areas, subsidence of soft and
nonhomogeneous clay deposits is often modeled using a hyperbolic rule (Park and Hong, 2021; Tan et al.,
1991).

In recent years, the availability of SAR data and improvements in computational capabilities have

advanced the analysis of subsidence. Initially, subsidence was primarily analyzed directly from InNSAR
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increased data availability from sources like Sentinel-1 and significant computational advancements, the
deformation patterns in various areas and situations have become clearer. Consequently, research has
increasingly focused on time series modeling to investigate spatiotemporal patterns, using algorithms for

classification, clustering, and detection.

Seasonal and trend decomposition using LOESS and variational modal decomposition have been
combined to estimate the periodic and trend components of INSAR time series and the thermal expansion
characteristics of bridges (Bai et al., 2022). Similarly, INSAR time series are decomposed into trend and
seasonality using least squares linear regression and the Fast Fourier Transform (FFT) (Priestley, 1981),
followed by unsupervised detection of the time series (Festa et al., 2023). For turning/change points
detection, a sequential turning point detection method for INSAR time series has been proposed
(Ghaderpour et al., 2024). Additionally, a deep learning approach combining long short-term memory
(LSTM) and time-gated LSTM has been developed for change point detection (Lattari et al., 2022). For
INSAR time series classification, combining a stacked autoencoder (SAE) with a convolutional neural
network (CNN) enables classification into five categories: stable, linear, accelerating, decelerating, and
phase unwrapping error (Li et al., 2023).

In current research, seasonality is often analyzed in contexts such as the seasonal deformation of
permafrost due to freezing and thawing (Jung et al., 2023) or the seasonal deformation of landslides
correlated with precipitation (Hu et al., 2016). However, some seasonal signals not related to actual land
surface deformation can mislead interpretation. Abrupt changes are also crucial for hazard assessment,
especially in areas like the Po Delta, where significant portions of land are below sea level and protected
by embankments. In the spatial domain, delta subsidence often exhibits a seaward distribution due to
compressible deposits, potentially obscuring anomalous subsidence and complicating risk identification.
Therefore, it is essential to provide a comprehensive spatiotemporal analysis of subsidence in areas such
as the Po Delta.

Efforts in using INSAR for monitoring land subsidence have been significant, but systematic
analysis of its time series is still in its early stages. With approximately 10 years of cumulative Sentinel-
1 data, developing a framework for automatic monitoring of critical elements is particularly important. In
this study, we present a spatiotemporal analysis based on INSAR time series, incorporating trend,
seasonality, and abrupt change detection in the temporal domain, as well as numerical modeling in the

spatial domain.

4.2 Tool chain for subsidence

In the context of subsidence, predisposing factors include topography, geological and geotechnical

characteristics, land use/land cover (LULC), distance from tectonics, permeability, sea level and
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geothermal activity (see Figure 33).

The subsidence tool chain assigns different levels of significance to each factor, indicated by a star
rating: high (3 stars: topography, geology, geotechnical properties), medium (2 stars: LULC, distance
from tectonics), low (1 star: permeability, sea level, geothermal activity). To the predisposing factors can
be possibly added the preparatory factors which are water pumping, water table fluctuations and
urbanisation. Trigger in cases of subsidence is water pumping. The effects of the post-trigger can be
represented through process severity class maps that can be qualitative, quantitative (INSAR) and semi-
quantitative (susceptibility).

Are there
preparatory
processes?
lsa Multi-
tllgge:{ﬂ hazards?
needeaqary

Predisposing :
Topography
Geology(

000
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Figure 33. Tool chain developed under the RETURN project for subsidence analysis.

4.3 Methodology and Data

4.3.1 Data sources

The study utilized data from the European Ground Motion Service (EGMS) ortho product derived
from Sentinel-1 between 2018 and 2022, capturing vertical and horizontal movements at 6-day intervals.
Given that subsidence is the primary concern in the Po Delta area, only vertical movement data were
analyzed. The EGMS dataset provides information on mean velocity, seasonal variations, time series
displacement, among other parameters. Comparison of these velocities with our previous findings
processed using the IPTA method in GAMMA software (Wegndller et al., 2016), shows strong agreement
(Fabris et al., 2022).

Figure 1b displays the vertical velocity sourced from EGMS data, indicating a seaward trend with
velocities exceeding -10 mm/year nearer to the coast. Given the relatively short study period for this long-
term subsidence process, the velocity trend typically exhibits a linear pattern. In Figure 1c, seasonality
exhibits a varied spatial distribution. Most points show minimal seasonality, less than 2 mm, while only a
few points record seasonality exceeding 4 mm.
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4.3.2 Spatial modelling
To establish the relationship between the age of deposits and vertical velocities, four common
functional models—power, exponential, logarithmic, and hyperbolic—were evaluated using the following

formulas,
(1) power function: y = a - x? + ¢
(2) exponential model: y = a - e?* + ¢ - e?*

(3) logarithmic model: y = b -Inin (x + a) + ¢

(4) hyperbolic function: y = +c

ax+b

The age of deposits across the study area was obtained from geochronological data (Stefani and
Vincenzi, 2005) and interpolated using a triangulated irregular network. The age values of deposits at

specific points (PS points) were extracted from this network.

Considering the ongoing subsidence in the Po Delta area, which may include anomalies caused by
anthropogenic factors (outliers), a robust least squares method is employed using bisquare weights (Huber
and Ronchetti, 2011). The bisquare weights method minimizes a weighted sum of squares, where each
data point's weight depends on its distance from the fitted line. Points close to the line receive full weight,
while points further away receive reduced weight. Points that deviate significantly from the expected value
may receive zero weight. This approach aims to fit a curve to the majority of the data using standard least
squares while mitigating the influence of outliers.

The coefficient of determination R? and root mean square error (RMSE) of the four models are
compared to determine the best-performing model. Subsequently, the chosen model is utilized to simulate
subsidence based on the age of deposits. Following simulation, the disparity between observed and
simulated subsidence is calculated. It is anticipated that there will be instances of anomalous subsidence

in this analysis.

4.3.3 Temporal modelling: Modelling trend and seasonality

Given the potential movement characteristics within the delta, a regression model utilized in the
EGMS data analysis is employed. This model comprises a third-order polynomial trend combined with a
seasonal (sinusoidal) component. By applying this regression model to the INSAR time series data, the
movement characteristics can be categorized into three main types: trend-dominant, seasonal-dominant,
and irregular patterns. The parameter vector of the fitting model is as follows:

G = [t3t?> t ones(n, 1) cos cos 2m-t) 0 sin (2w -t)]
where n represents the number of images and ¢ is a column vector containing n acquisition dates.
After regression, if the standard deviation (STD) of the residuals is smaller than a specified
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threshold o and the amplitude of seasonality is smaller than another specified threshold o, the data are
classified as trend-dominant. If the STD of the residuals is smaller than the specified threshold ¢ but the
amplitude of seasonality exceeds o, the data are classified as seasonal-dominant. Any data that does not

meet these criteria are classified as irregular patterns.

Since there are points showing noticeable seasonal variations, further investigation into seasonality
includes examining its correlation with land surface temperature (LST). The Pearson correlation
coefficient (C) between displacement and temperature time series is computed to assess the influence of

temperature changes or other potential factors on displacement, using the following equation,

C= -1 (G- —w)
VI, G -D2EE, (W —w)?

where t;, w; represent land surface displacement and temperature, respectively, for the ith dates. The

correlation coefficient C ranges from -1 to 1. A negative C indicates opposite seasonal patterns between

the two parameters, while a positive C suggests similar seasonal patterns.

4.3.4 Temporal modelling: Change detection

In comparison to other remote sensing time series data, INSAR time series exhibit greater
complexity and flexibility due to their spatiotemporal patterns being less rigidly tied to land use or
geography. Given the uncertainty surrounding change points in such data, we adopted a method proposed
by Zhao et al. (2019), tailored with our specific pattern definitions. This method, known as Bayesian
Estimator of Abrupt Change, Seasonal Change, and Trend (BEAST), is designed for time-series
decomposition, allowing for the extraction of nonlinear ecosystem dynamics across various timescales.
BEAST employs Bayesian model averaging to assess the utility of individual decomposition models,
thereby enhancing the robustness of detecting changepoints, seasonality, and trends in the data. It provides
realistic nonlinear trend estimates and credible uncertainty measures, which are challenging to obtain
using traditional single-best-model approaches.

In their evaluation, Li et al. (2022) assessed the effectiveness of three widely used methods:
Detecting Breakpoints and Estimating Segments in Trend (DBEST) (Jamali et al., 2015), Breaks for
Additive Seasonal and Trend (BFAST) (Verbesselt et al., 2010), and BEAST (Zhao et al., 2019). They
determined that BEAST demonstrated superior performance in detecting abrupt changes in both trend and
seasonality. Furthermore, BEAST was noted for its capability to effectively characterize the dynamics of

abrupt changes in the data.

In our study, the seasonal components are modeled using a harmonic format with a seasonality
order set to 1, indicating a single type of seasonal pattern. Given that seasonal variations are not relevant
to subsidence, we disregard abrupt changes in the seasonal components, setting this parameter to 0. For
the trend component, we assume the number of change points to range from 0 to 5. This choice reflects

the INSAR time series data's 5-year period, allowing for at most 1 change point per year. The trend order
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IS set to 3, accommodating gradual curvilinear trends in the data. The algorithm provides probabilities
associated with detected change points. We establish a probability threshold of 0.9, meaning that if the
probability exceeds 0.9, the time series is considered to have experienced an abrupt change at that specific
date. Regarding outliers, the algorithm permits a maximum of 50 outlier-type changepoints within the

total dataset spanning 302 dates.

4.4 Application and validation to Po delta

4.4.1 Classification of PS points

According to our methodology, the PS points are categorized using the regression method. Points
with low standard deviation (STD) and a small amplitude of seasonality exhibit displacements that align
with a linear or curvilinear trend, classified as trend-dominated, as depicted in Figure 34a. Conversely,
points with low STD but a large amplitude of seasonality display displacements following a clear seasonal
pattern, classified as seasonal-dominated points, as shown in Figure 34b. The third category comprises
points characterized by irregular patterns, resembling Figure 34c, lacking distinct trend or seasonal

components but exhibiting noise.

In a subsequent analysis, to determine whether the trend tends towards linearity or curvature, a
model comprising a first-order polynomial trend plus a seasonal (sinusoidal) component was employed.
The standard deviation (STD) of the first-order polynomial model was compared with that of the third-
order polynomial model, and their STD histograms are depicted in Figure 34d. It was observed that third-
order polynomial models generally exhibit lower STD compared to linear models. This is reasonable
because a linear trend can be seen as a special case of a first-order polynomial trend. For most points, the
STD values from both models are similar, indicating these points follow a linear trend. However, in some
cases, the STD from the third-order polynomial models is significantly lower, suggesting that these points

are more likely to follow a curvilinear trend.

To visually distinguish between different classes of points, a threshold of STD for distinguishing
regular and irregular points is set to 2. Additionally, a threshold of amplitude of seasonality between trend-
dominated and seasonal-dominated points is set to 1. Using these thresholds, the classification of the PS
points is illustrated in Figure 34e, with selected enlarged images. This figure clearly identifies points

exhibiting linear displacements versus those showing seasonal displacements.
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Figure 34 Classification of the points according to their temporal pattern.

4.4.2 Abrupt changes

Typical INSAR time series with and without abrupt changes are depicted in Figure 35a-d. The
original time series exhibit clear abrupt changes, detectable using BEAST algorithms. When abrupt
changes are evident, the probability of the change point approaches 1. The distribution of points with and
without abrupt changes is illustrated in Figure 35e , with the majority showing no abrupt changes. Due to
the Monte Carlo algorithm used in the calculations, results may vary. To enhance confidence in the results,

calculations can be repeated multiple times.
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Figure 35. Spatial distribution of PS points without/with abrupt changes, with magnified images.

4.5 Spatial domain

The four models, including linear, polynomial (up to third order), power, exponential, and

logarithmic models, were tested using robust estimation. Following the regression process, the fitted

parameters along with their 95% confidence intervals are presented below, alongside the corresponding

R2 and RMSE values.

(1) power function

— 8.284

y = 1.193 - x0-1828

R? = 0.7188, RMSE = 0.7987
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(2) exponential model:

y = —2.122 ¢ 0004936x _ 4 427 . o=0:00009958x
= 0.71887, RMSE = 0.799

(3) logarithmic model:

y =0.6924 Inln (x + 10.71) —8.816
2 =(0.7238, RMSE = 0.7916

(4) hyperbolic function:

X
Y = 02984 x+8236 0°%8

2=0.7201, RMSE = 0.7968

The R2 and RMSE values of the four models are closely comparable, suggesting similar
effectiveness in modeling. Figure 36 displays the four fitted lines against a backdrop of a scatter plot
depicting the relationship between sediment ages (over the last 3500 years) and vertical velocities. Each

fitted line exhibits a similar trend.

Subsidence rate (mm/year)
Subsidence rate (mm/year)

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Subsidence rate (mm/year)
Subsidence rate (mm/year)

I I 1 I - 5 1 1 I 1
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Years BP Years BP

Figure 36. Geochronology data and the vertical velocity across all PS points within the area formed over the last
3500 years, modeled robustly using the logarithmic function.
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Since there was little difference observed between the four models, and considering the
logarithmic shape proposed by Teatini et al. (2011), the logarithmic model was selected for modeling
natural subsidence in this study. Using the fitted parameters, the modeled subsidence distribution is
depicted in Figure 37b. The observed subsidence distribution is shown in Figure 37a using the same
colormap. The modeled subsidence distribution closely resembles the observed subsidence distribution.
Figure 37 illustrates the difference between observed and modeled subsidence. For most points, the
differences range from -2 to 2 mm/year, indicating good agreement between observed and modeled values.
However, certain points show larger differences, as highlighted in Figure 37d-g: levees, a power plant, a
breakwater, and a transmission tower exhibit significant differences. In Figure 37d-f, the differences are
negative, indicating observed subsidence is greater than modeled. Conversely, in Figure 37g, the
differences for the power tower line are positive, suggesting observed subsidence is less than modeled.
Several factors could contribute to these discrepancies. Firstly, the lithology, shows predominant deposits
of ancient coastal sands, delta fronts, and distributary channels. Secondly, construction of the tower likely
required deeper foundations, potentially affecting the compressible deposits differently compared to

surrounding areas.
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Figure 37. Vertical veI00|tycompar|son between obsen/ed and modeled dta (a) Observed vertlcal veIOC|ty (b)
Modeled vertical velocity derived using the logarithmic relationship with geochronology. (c) Difference between
observed and modeled vertical velocities. (d-f) Magnified views of selected areas.
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Sinkholes are characterized by an enclosed depression, regardless of the presence of an internal
drainage (Waltham and Fookes, 2003), with a predominantly subcircular shape in plan view and a varying
three-dimensional shape (cylindrical, conical, etc.). (Gutiérrez, 2016). The process that generates
sinkholes can usually be described in the following steps (Waltham et al., 2005): firstly, surface or
meteoric water enters an enclosed depression, and it infiltrates underground. This first step can also be
accompanied by possible local ground erosion due to water that washes away the surface material.
Subsequently, the infiltrated water can cause the dissolution of soluble rock underground, typically karst-
related materials or evaporitic rocks. This dissolution can form underground cavities that can eventually

collapse and form a sinkhole.

The described process can also impact man made underground cavities, and, in this case, sinkholes
triggered due to the heavy anthropization are called “anthropogenic sinkholes” (Guarino and Nisio, 2012;
Parise, 2015). Man made  cavities are extremely widespread all over the world, and even in Italian cities
like Rome (Fasani et al., 2013), Catania (Bonaccorso et al. 2005), Naples (Varriale et al., 2022) (Figure
38), and Palermo (Todaro, 2020).
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Figure 38. Example of a dense underground cavity network in an Italian city (Naples). In the inlet, the location of
the city of Naples in the Italian peninsula.

These voids can be either directly or indirectly related to human activities. Mining building stones
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anthropogenic sinkholes (Singh and Dhar, 1997). In January 1996, during the construction of an
underground tunnel aimed at road network expansion, a sinkhole triggered and damaged a gas pipeline;
the subsequent explosion caused by the sinkhole killed 11 people and heavily damaged a residential
building (Puntillo, 2001). Sinkholes caused by leaking faulty or damaged pipes can be the cause of
unexpected underground cavities (Dastpak et al., 2023) and be a danger to human life: in September 1969,
in Via Aniello Falcone, a teacher died after an underground cavity caused by a damaged water collector
collapsed (Puntillo, 2001).

The methodology proposed in this deliverable as a tool for the anthropogenic sinkhole
susceptibility analysis is aimed at the objectives of WP4 and, in particular, Task 2.4.3. It is based on a
statistical approach, in particular to the construction of an ensemble model, using three different machine
learning algorithms: Gradient Boosting Machine (hereafter GBM) (Friedman, 2001); Random Forest (RF)
(Breiman, 2001); and Maximum Entropy (MaxEnt) (Phillips and Dudik, 2008). Subsequently, the
Temporal Occurrence is evaluated using the Poisson distribution (Poisson, 1837; Haight, 1967) for 4,
user-defined, time intervals. Lastly, twelve hazard scenarios (three Spatial Occurrence maps x four
Temporal Occurrence probabilities) (Figure 39) are obtained. The tool requires, before starting the
processing, to compile the CONFIG.txt file. The user can define different settings by modifying the file
(the specific settings will be shown later) with the first one being the choice between:

- Sinkhole Susceptibility Assessment;

- Sinkhole Hazard Scenario Evaluation.

Predisposing factors Sinkhole Inventory Temporal Data

£ b y

Poisson distribution analysis to
evaluate the temporal
occurrence probability (P) at t;,

ty, t3, and t,.
Magnitude Data ﬂ ﬂ ﬂ ﬂ
- Poisson || Poisson [ Poisson [ Poisson
P;fort, P, for t,. P, for ty. P, forty
\ )
L Y

Ensemble Model with three :> PEEIHEEEEEBIL Mx Py | MyxP, | MyxPy | MoxP [ M,

Magnitude (M) scenarios:

1) Magnitude < 2m; [:> Magnitude Scenario M, Myx Py | Mpx P, | Myx Py | Myx P, M,

2) 2m < Magnitude < 5m;

Siiagit et |:> Magnitude Scenario M, Max Py | Mgx Py | Mgx Py | Max Py | M,

P; P, P, P, Scenarios

Figure 39. Example of Hazard Scenarios evaluation using the produced tool.

Figure 39
5.1 Tool chain for subsidence

In the context of subsidence, predisposing factors include geological and geotechnical
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characteristics, structural elements, past events, distance from infrastructures, man-made caves, LULC
and topograph (see Figure 40), with different levels of significance: high (3 stars: topography, geology,
geotechnical properties), medium (2 stars: LULC, distance from tectonics), low (1 star: permeability, sea
level, geothermal activity). To the predisposing factors can be possibly added the preparatory factors
which are heavy rainfall events and water table fluctuations. Trigger in cases of sinkholes is the occurrence
of important rainfall events. The effects of the post-trigger can be represented through process severity

class maps that can be qualitative, quantitative (INSAR) and semi-quantitative (susceptibility).

Are there
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processes? needed? hazards?

Predisposing :
Geology

Structural elements Effects:

o050 . Process severity class
- Rainfallieventsy (18] map
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Semiguantitative
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Distance from Infrastructures

(

Man-made caves
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g R

Triggers:
Rainfall events

Post-trigger

Figure 40. Tool chain developed under the RETURN project for sinkholes analysis.

5.2 Anthropogenic Sinkhole Inventory: Data gathering for statistical analysis

The Anthropogenic Sinkhole inventory (Figure 41) is an essential tool for sinkhole susceptibility
assessment (Tufano et al., 2022). As the proposed approach is based on statistical methods like machine
learning algorithms, an anthropogenic sinkhole inventory containing updated and complete information
is a vital tool. In particular, this approach uses the exact dates data to perform Poisson distribution and
sinkhole diameter to evaluate the magnitude of the event. The reason the diameter has been chosen as the
magnitude index instead of the depth is mostly related to both data availability (the diameter is a
characteristic measurable from the surface level) and the impact on the urban fabric, as sinkholes of
different sizes can lead to different degrees of road or building interdiction.
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Figure 41. Anthropogenic Sinkhole Inventory of the city of Naples. This South Italian city and the city of Palermo
have been largely used as test areas for the proposed approach.

The proposed approach, which uses the sinkhole inventory as the presence data for the statistical
analysis, requires different .csv files depending on the type of analysis required by the user. As mentioned
before, the tool can execute two different methods, the first one (a) for a simple susceptibility analysis and

the second one (b) for the Sinkhole Hazard scenarios.

The inventory/presence data required for the first method needs to be formatted as a .csv file

containing the following three columns:
- First column containing ID or species data (will not be used during the process phase);

- Longitude — the coordinate system is irrelevant; it only needs to be the same one as the
predisposing factor raster files;

- Latitude — just like the Longitude column, the EPSG needs to be the same one as the longitude

and the predisposing factors raster ones.

Regarding the second approach, the required inventory file increases to two .csv, as the temporal
and spatial analysis are performed separately.

The .csv file containing the data for the susceptibility analysis also contains the sinkhole diameters
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- ID or species data column;

- Longitude;

- Latitude;

- Diameter — containing the data related to the maximum diameter of the sinkhole.

A B
1 Ispecies,LGH,Lat,D (m)
Sinkhole,434265.16,4520946.05,2.50
Sinkhole,436689.25,4524535.26,1.00
Sinkhole,435837.49,4521359.22,1.80
Sinkhole,434674.94,4521567.93,0.50
Sinkhole,438304.14,4522707.23,0.50
Sinkhole,437094.79,4523039.76,10.00
Sinkhole,435046.46,4522990.98,3.00
Sinkhole,437055.33,4522342.05,11.00
10 |Sinkhole,435419.92,4523079.38,1.50

(== I s I A TR SUR FE R 8}

Figure 42. Example of Hazard Scenarios evaluation using the produced tool.

As for the second .csv file, the one related to the temporal analysis (Figure 43), it is also made up

of four columns:
- ID or species data column;
- Longitude;
- Latitude;
- Date — with format data YYYY-MM-DD.

A =

species,lon,lat,Date

Sinkhole,433926.69,4522740.22,2009-06-21
Sinkhole,435243.68,4523170.69,2009-06-21
Sinkhole,436583.37,4521012.68,2009-11-03
Sinkhole,434265.16,4520946.05,2009-12-02
Sinkhole,436689.25,4524535.26,2009-12-18
Sinkhole,435837.49,4521359.22,2013-10-08
Sinkhole,436793.55,4522498.07,2013-11-30
Sinkhole,434674.94,4521567.93,2013-03-08
10 |Sinkhole,438304.14,4522707.23,2013-11-25

W0 ) LA e W R

Figure 43. Example of a .csv file containing the precise dates of occurrence.

As shown previously in Figure 41, not all the entries of the sinkhole inventory contain complete
information about the event. There could be a sinkhole with complete geometrical information but no

precise date of occurrence, or there could be an event well known from a temporal point of view but
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formatting phase easier, it was decided to utilize two different .csv inventory files in the second type of

approach.

5.3 Anthropogenic Sinkhole spatial Occurrence Analysis

The tool for the Anthropogenic Sinkhole Spatial Occurrence analysis has been written in R (R Core Team,
2024) using the R Studio software (Posit Team, 2025). Other packages used are:

e biomod2 (Thuiller et al., 2023);

e caret (Kuhn, 2008);

e classiInt (Bivand, 2025);

e dismo (Hijmans et al., 2024);

e doparallel (Corporation and Weston, 2022);
e dplyr (Wickham et al., 2023);

e earth (Milborrow et al., 2024);

e gam (Hastie, 2024);

e ggplot2 (Wickham, 2016);

e ggtext (Wilke and Wiernik, 2022);

e glmnet (Tay et al., 2023);

e leaflet (Cheng et al., 2024);

e maxnet (Phillips, 2021);

e mda (Hastie and Tibshirani, 2024);

e modEVA (Barbosa et al., 2013);

o parallel (R Core Team, 2024);

e raster (Hijmans, 2025a);

e randomForest (Liaw and Wiener, 2002);

e RcppEigen (Bates and Eddelbuettel, 2013);
e sf (Pebesma, 2018; Pebesma and Bivand, 2023);
e spatstat (Baddeley et al., 2015);

e terra (Hijmans, 2025b);
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e tidyterra (Hernangémez, 2023);
e usdm (Naimi et al., 2014);
e writexl (Ooms, 2024);

e Xxgboost (Chen et al., 2024).
Of these packages: biomod2; caret, dismo, doparallel, dplyr, earth, gam, gilmnet, maxnet, mda, parallel,
randomForest, RcppEigen, sf, spatstat, usdm, and xgboost were used for analysis; classint to divide the
susceptibility maps into classes using the Natural Breaks method (Jenks, 1967); ggplot2, ggtext, leaflet,
tidyterra were used for diagram and map building; raster and terra were used to perform analysis on the
raster data; writex| was employed to manage .xIsx files; finally, the modEVA package was used for the

final performance evaluation.

The script requires the intervention of the user to set up the analysis. Before starting the analysis,
opening the CONFIG.txt is required (Figure 44).
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File Madifica Visualizza

## THIS IS THE CONFIG FILE FOR THE R-CODED SUSCEPTIBILILTY TOOL ##
## DO NOT CHANGE THE FORMAT OF THIS FILE ##

# DO YOU WANT TO:
# [1] Perform a simple Susceptibility Assessment;
# [2] Evaluate diffefent scenarios depending on Sinkhole Magnitude (based on sinkhole diameter) and Return Period (Poisson Distribution);

# Insert [1] or [2] in the following line:
AMNALYSIS =2

## GENERAL PARAMETERS ##

# Insert Project Name (1 word):
Proj_Name = NapoliM

# Threshold for the VIF An a predisposing factor overcome this threshold, it is excluded from the analysis.
VIF_ANALYSIS_THRES

# Number of Pseudo-Absence points and Background Points for MAXNET.
n_PB = 10000

# Number of Pseudo-Absence (or Background Points) sets per algorithm.
PA sets = 10

# Number of folds for the K-Fold Cross-Validation. Consider to increase this number only when a lot of presence data are available.
k=3

# Ensemble Modeling ROC/AUC threshold. To be implemented into the Ensemble, the models should, at least, reach the following score (maximum value = 1.00).
EM_th=0.70

# The total number of models will be equal to:
#3 (GBM, MAXNET, RF) * k* PA_sets

ONFIG PARAMETERS WHEN ANALY: 2

# Define diameter limits of every ¢ Th number is the upper limit of the class with the smaller diameter value (i.e. =2 m), the second number
=h m) for the third class. Three classes are obtained from this two break data.

100% Windows (CRLF)

Figure 44. The CONFIG.txt file.

In the first section, at the “ANALYSIS” entries, the user can decide which type of analysis to
perform, using either 1 for a sinkhole susceptibility analysis or 2 for the sinkhole hazard scenarios.

In the following section, the user can select the name of the project in “Proj Name”, while the
threshold is used for the Variance Inflation Factor (hereafter VIF). This is a useful tool used to find out if
there are collinearity problems, as statistical methods tend to not be able to distinguish when two predictor
variables are closely related to each other, leading to collinearity problems. James et al. (2021) define
collinearity as "...the situation in which two or more predictor variables are closely related to one
another”. These two parameters tend to have a similar impacts on the model, making it difficult to evaluate
the impact of a single predisposing factor. The VIF formula is calculated as (modified from James et al.,
2021):

71



Finanziato Min’iSte_ro . . -. ) ) Ry, UNIVERSITA DEGLSTUDI DI NAPO
oo | () setimersa | BB domant | (EIFEDERICO
VIF, —1
7T 1-RY%,
x-j

In this formula, R%x. is the R? value of the regression between the predisposing factor j against other
factors. It is, in other words, a coefficient that defines how well a model describes the outcome. The higher
the value of R?, the higher the VIF value, and more related are the two predisposing factors to each other.
On the other hand, low VIF values are linked to small R? values. The minimum value the VIF can assume
is 1, which means total absence of collinearity. Generally speaking, James et al. (2021) suggest being
careful with parameters whose VIF value exceeds 5. The standard value of VIF proposed in the
CONFIG.txt file is 5. Beware, any predisposing factor with a VVIF higher than the user-selected threshold

will be excluded from the analysis. The following entries are related to:

e n_PB, which is the number of pseudo-absence points for the MaxEnt analysis;

e PA_ sets the number of sets of different pseudo-absence points (for GBM and RF) or background

points (for MaxEnt) used to elaborate multiple single models;

e k which is the number of folds for the k-Fold Crossvalidation, used on the presence data, allowing

the iteration of the modelization process and obtaining a performance score for every single model;

e EM th is the minimum performance score needed for a model to be used during the ensemble
modeling phase and to contribute to the final ensemble model.

The last section of the CONFIG.txt file is related to the Sinkhole Hazard scenario analysis. The two

entries “breakl” and “break2” represent, respectively, the upper limit of the class with the smaller

diameter value, and the second number represents the minimum dimension of the third class. Once the

CONFIG.txt file has been successfully modified by the user, the main script can be executed.

5.3.1 Predisposing factors

Regarding the predisposing factor, the tool requires them to be provided in .asc format, and they
also must have the same extension and resolution. If there are any differences between the .asc raster files,
the process will stop. As it is, the tool could also be used to evaluate other geohazard susceptibility, like
landslides. There is not a restriction on which type of predisposing factors can be provided. In the specific
case of the city of Naples, which has been used to showcase the results later, the predisposing factors used

are the following:

- AS_Net_Den, which represents the density of elements related to the main aqueduct and sewer networks;
- AS_Net_Dis, which is the distance to the main aqueduct and sewer networks;

- Cav_Den, the density of underground cavities;

- Cav_Dis, distance to the underground cavity network;
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- Geology;

- Hydr_Net_Den, the density of elements that are part of the hydrographic network;
- Hydr_Net_Dis, distance to the hydrographic network;

- Cover_Thick, the thickness of the cover layer;

- Land_Use;

- Road_Den, density of the road network;

- Road_Dis distance to the roads;

- Slope_Angle.

As specified before, other predisposing factors can be freely added, assuming they are useful to
the ongoing analysis. As for the first of the different products of the tool, the VIF analysis is shown in the
“Other_Results” folder and named as “01 VIF Analysis.tiff” (Figure 45).

VIF Evaluation

12_Slope_Angle
11_Road_Dis
10_Road_Den
09_Land_Use
08_Cover_Thick
07_Hydr_Net_Dis
06_Hydr Net_Den
05_Geology
04_Cav_Dis
03_Cav_Den
02_AS_Net_Dis

01_AS_Net_Den

| I | I ]

2 4 6 8 10

Figure 45. Example of one of the products of the tool, the VIF analysis, in this case, no collinearity problems are
found, and all the predisposing factors will be used.

o

5.3.2 Ensemble Modeling

The following steps of the proposed approach are slightly different based on the selected method.
In both cases, the presence data provided are divided into two sets: the training data (70%) and the test
data (30%). The training data is used to train the singular machine learning models, while the remaining
30% is used at the end of the analysis to test the ensemble model obtained to avoid positive bias in the

final performance evaluation. The singular models are evaluated using the k-fold Crossvalidation method.
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used to validate the singular model. By iterating the process and changing the validate set, multiple models
can be obtained varying the input data. This validation score of the base models is used to check if the
models overcome the user-defined threshold and if it will be used to evaluate the ensemble model (Figure
46).

Dataset

Predisposing Factors

=

Training /

Sat 1 Model 1 Output 1
Training - /

St 2 J / Model 2 Output 2
Training o /

Set 7 Model .. Output ..

Training

Set n J 7 Model n H Output n
l A 4

Combiner Unbiased
(Mean; Weighted . Final Model
Mean, Median; Final Model Performance

etc..) Evaluation

Figure 46. Flowchart of a generic Ensemble Model.

Test
Data

Training
Data

j—

The tool uses three machine learning models to evaluate the singular models: Random Forest (RF),
Gradient Boosting Machine (GBM), and Maximum Entropy (MaxEnt). Due to compatibility reasons with
different machines, the MaxEnt version used is not the one provided with the “dismo” package, but a
different version specifically built for R, and, from hereafter, it will be referred to as MAXNET and not
MAXENT.

Random Forest is a machine learning algorithm that produces, for every model, a multitude of
decision trees. Every tree is made of nodes, from where different branches develop. For every node, only
a subset of predisposing factors is evaluated. At the following node, a new subset of factors is randomly
chosen and evaluated. In this way, the algorithm produces trees that can be extremely different from one
another, which is intended as if every tree used the same amount and kind of predisposing factors, then
one extremely important factor would always be the main discerning one. During the modeling phase, a
portion of the data, the out-of-bag (OOB) data, is excluded from the training. This data is then used to
evaluate the tree's performance and to determine the importance of the predictors. In the final step, the
values of one predictor are permuted each time a tree is processed. By comparing the tree's predictive

accuracy before and after the permutation, we can assess the impact of the predictor's randomization.
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a multitude of trees, but the iteration of different models is also used to increase the overall performance
of the final model. The modeling phase starts with the attribution of an average weight for the predisposing
factors. The training data is also used to verify the performance of the initial model. Afterward, a new
weight evaluation is performed until it reaches acceptable results, or it reaches the maximum number of
iterations allowed. In particular, the new weight evaluation is executed by creating a new decision tree
that focuses on minimizing the error evaluated with the previous tree. The main difference with the RF
algorithm is related to the usage of the decision trees. In RF, the trees are models in themselves, while the
GBM uses every tree as a weak learner to improve the previous one. Both RF and GBM could be
considered, on their own, ensemble models (James et al., 2021).

Maximum Entropy (and also MAXNET) was first developed and used as a species distribution
tool. It relies on the assumption that the best model that describes the spatial distribution of a species (in
this tool, sinkholes) is obtained by maximizing the entropy, which is the degree of resolution of the system.
It is also used to measure how important a predisposing factor or other parameter is within a model. During
the analysis, the algorithm evaluates the predisposing factors in correspondence with both the presence
points (the sinkholes) and the background points, finding the areas that are more likely to contain
predisposing factor data compatible with those found in correspondence with the presence data. The model
obtained corresponds to the model without initial hypotheses, which can lead to phenomena occurrence
with any combination of predictive variables since it has the maximum uncertainty on occurrence
probability (Phillips and Dudik, 2008). Regarding predisposing factors importance, the algorithm utilizes
the data permutation approach: it replaces the values of a predisposing factor randomly, and if the new
values lead to a strong reduction of the model performance, then the analyzed parameter is significant to
the model. If the permutation does not influence the final performance, then the analyzed predisposing
factor is not important for modeling purposes. Any loss of performance is measured, and the difference
between the performance before and after the permutation allows the evaluation of the predisposing factor

importance for the model.

After the singular models are produced and validated using the k-fold Crossvalidation approach,
the ensemble model production starts. An ensemble model is a combination of multiple models obtained
using both different algorithms and different input data. In the case of the presented tool, three different
algorithms and a user-defined number of different sets of pseudo-absences are provided. The total number
of models produced with this tool is equal to:

Total number of models = 3 (number of algorithms) X n° of Pseudo Absence sets X k (k — fold crossvalidation)

Considering 10 sets of pseudo-absences and a 3-fold Crossvalidation, the total number of models

obtained is 90. As the last step for the spatial occurrence assessment, the models that overcome the user-
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defined ROC threshold are combined into the final ensemble model using, as the combiner, a weighted
mean. The weight of the models is based on their validation score. The final performance evaluation is
performed using the ROC/AUC, Sensitivity, Specificity and standardized True Skill Statistic (STSS)
scores (Fauwcett, 2006). In order to evaluate the ROC/AUC and the sTSS performance score, the
Sensitivity and Specificity need to be evaluated first using the true positive (areas influenced by sinkholes
and detected as a criticality), true negative (areas not affected by sinkholes and not recognized as a
criticality), false positive (areas not influenced by sinkholes recognized as a criticality), and false negative

(areas impacted by sinkholes but not recognized as a criticality) values. Sensitivity is calculated as:

true positive

Sensitivity = — -
true positive + false negative

While Specificity is calculated as:

true negative

Specificity = true negative + false positive

The ROC/AUC score is based on the Receiver Operating Characteristics (ROC) curve and,
subsequently, the relative Area Under the Curve (AUC). The ROC curve is built plotting the Sensitivity
on the y-axis and the false positive rate (1-Specificity) on the x-axis. By evaluating the area under the

ROC curve, the ROC/AUC score is obtained.
The sTSS is the standardized value of the TSS, calculated as:

L false positive
TSS = Sensitivity —

false positive + true negative
5.3.3 Results

At the end of the first part of the analysis, different products are already available. The first product
has already been shown: the VIF analysis (Figure 45). If no predisposing factors show collinearity
problems, a single bar plot is produced. On the other hand, if there are collinearity issues, a second bar
plot is produced to show the results of the second VIF scores after taking out the predisposing factors that
show collinearity. The second product is used to show the Presence and Pseudo Absence points within the

analyzed area (Figure 47).
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Figure 47. Example of Presence and Pseudo Absence points.

The following products are related to plotting the singular models (Figure 48) and the ensemble
model obtained (Figure 49). The first one is named “03_ProjectionData.tiff,” while the second one is
named “04 SP_FORECAST.tiff.” If the method selected is the Sinkhole Hazard scenario evaluation, all
these files have a prefix “SET1 ,” “SET2 ,” or “SET3 _.”
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Figure 48. Example of the 03_ProjectionData.tiff product.

Hazoih2_ EIMMESNSAOC, mersodans_ mersaRan.amicigs.

Figure 49. Example of the 04_SP_FORECAST tiff file.

Additional products that the tool provides are the response curves (Figure 50), which show the
relationship  between sinkhole and the specific predisposing factor and are named
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“05_ResponseCurves.tiff,” and the predisposing factors importance boxplot based on the algorithm
(Figure 51) (“06_Varlmp Alg.tift”).

Response curves for NapoliM.2's models

X01_AS_Net_Den X02_AS_Net_Dis X03_Cav_Den X04_Cav_Dis
0.3
02-
01
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e s w & & o o B & & &
X05_Geology X06_Hydr_Net Den X07_Hydr_Net Dis X08_Cover_Thick
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02-
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| P : . . " . . | ' | | |
Q 2 ,IQ ..7Q A o @ -] Q \“00 ’LQQD N 3 ] b o
%08_Land_Use X10_Road_Den X11_Road_Dis X12_Slope_Angle
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01
| | | | | | L i
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NapoliM.2_EMwmeanByROC_mergedData_mergedRun_mergedAlgo

Figure 50. Example of response curves obtained from the proposed tool.

Variable Importance per Algorithm FOR SET 2
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Figure 51. Example of predisposing factor importance boxplot.

The remaining results are related to the final ensemble model obtained. In particular, the models’

performance score boxplot gathered based on the algorithm (Figure 52) (“07 Models Alg.tiff”), a
different plot of the final ensemble model (Figure 53) (“08 Susceptibility.tiff”), the ROC/AUC

performance score of the ensemble model (Figure 54) (“09 ROCAUC _Score.tiff”), a plot containing the
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Sensitivity, Specificity and sTSS (Figure 55).

Boxplots of Validation Data (ROC score) for SET 2

ROC
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©

o
=

GBM MAXNET RF
Algorithm

Figure 52. Example of models’ performance score boxplot.

Susceptibility Ensemble Model FOR SET 2 - Weighted Mean
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Figure 53. Ensemble model — anthropogenic sinkhole evaluation.

80



Ministero .
Wty dell’Universita . Italiadomani
FEED @ della Ricerca = PIANO NAZIGNAL

%

E
DI RIPRESA E RESILIENZA

T Finanziato

e 3

x X dall'Unione europea
ExE NextGenerationEU

Susceptibility Model Evaluation FOR SET 2 - ROC/AUC

<
-

0.8
|

True positive rate
(sensitivity)
0.4 0.6

|

0.2
1

AUC =0.876

I I I I I I
0.0 0.2 04 0.6 0.8 1.0

False positive rate
(1-specificity)

Figure 54. ROC/AUC performance score of the ensemble model.

Threshold-based Susceptibility Model Evaluation FOR SET 2
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Figure 55. Example of the threshold-based evaluation scores.

Finally, the last plot of this section of the tool provided is the class extension bar plot (in percentage)

(Figure 56). The sinkhole susceptibility map is provided as a .tiff file within the Other_Results folder,
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Figure 56. Example of the classes’ areal extension bar plot.

Lastly, five .xlsx files are also provided as products:
e Models_Varlmp.xlsx — containing all the predisposing factor importance evaluated for all the
models;
e ModelsEvaluation.xlsx — contains the validation scores of all the models obtained;

e Performance_Evaluations.xlsx — with the Sensitivity, Specificity, ROC/AUC, and sTSS scores of
the final ensemble model;

e Summary_Mean_ModelsPerformance.xlIsx — containing the mean ROC and sTSS scores obtained

with the different algorithms;

e Summary_Mean_Variable_Importance.xIsx — with the mean variable importance of all the
predisposing factors considering all the runs obtained with all the algorithms.
As already specified, when the sinkhole hazard scenario evaluation analysis is selected, three copies of all
the products described are provided, differentiated by the numbered set:

e Set 1 for the smaller sinkholes;

e Set 2 for the medium-sized sinkholes;
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e Set 3 for the bigger sized sinkholes.

5.4 Anthropogenic Sinkhole Temporal Occurrence Analysis

This section of the tool is executed only if the user has selected the Sinkhole Hazard scenarios
evaluation method during the CONFIG.txt file compiling. This analysis uses the second .csv inventory

file provided by the user.

As stated before, the distribution analysis used to evaluate the temporal occurrence is the Poisson
distribution. It is a probability distribution that evaluates the probability of occurrence of a new and
independent event within a time interval. The Poisson distribution assumes that the events are independent
in relation to each other and that they occur at a constant average rate. In the showcased example, the
sinkholes that occurred during the last 25 years were used as they were the ones with the most constant
average rate. The probability P of a new sinkhole initiation within a t time interval can be described by

the following formula:

t
P=1-—ex (——)
P K

Where p represents the mean time between sinkhole events obtained from the inventory in the last
25 years. The product of this analysis is the diagram shown in Figure 57. The red numbers represent the

user-defined t that will be used in the following scenario evaluation process.
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Figure 57. Poisson distribution, the data used for this example are part of the Sinkhole Inventory of the city of
Naples.
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5.5 Anthropogenic Sinkhole Hazard: scenarios evaluation

As the last step for the Anthropogenic Sinkhole Hazard scenarios evaluation process, the three
anthropogenic sinkhole susceptibility map (one for every class of sinkhole diameter) is combined with the
temporal probability occurrence obtained using the Poisson distribution (Figure 57) to obtain twelve
different scenarios (Figure 58), four for every sinkhole diameter class. The products provided by the tool,
in this final step, are twelve .tiff raster files with their values varying from 0 (lowest sinkhole hazard) to
1 (maximum sinkhole hazard). In the showcased example (Figure 59), the four products obtained for the
second set of the sinkhole inventory (diameter > 2 m and < 5 m) have been loaded into a GIS environment

and assigned the same colour scale to highlight the difference over the four user-defined time intervals.

Poisson Poisson Poisson Poisson
P,forty. || Poforts || Psforts. P, forty

Magnitude Scenario M, Myx Py | MyxP, | Myx Py | Myx Py M,

Magnitude Scenario M, — Mox Py | Mox Py | Mox Py | Myx Py M,

Magnitude Scenario M, Max Py [ Max Py [ Max Py | Max Py M

P, P, P, Py Scenarios

Figure 58. Sinkhole Hazard scenarios evaluation matrix.
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Figure 59. Sinkhole Hazard scenario evolution for sinkholes with a diameter > 2 m and <5 m within a) 1 month;
b) 3 months; c) 6 months; d) 9 months.
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6 The RETURNLAND Virtual Test Bed

The RETURN Virtual Test Bed (VTB), defined as RETURNLAND, was designed to recreate a unified
spatial context reflecting the environmental conditions throughout the country, serving as a general
framework within which the ground instabilities addressed by VS2 are studied and modelled. One of the
key objectives of the project is undoubtedly the development of a Virtual Test Bed (VTB), conceived as
a realistic territory (i.e., encompassing geo- and hydro-morphological features typical of widely occurring
contexts across the landscape), though not necessarily corresponding to an overall real location. The VTB
serves as a testing environment for evaluating the performance and versatility of toolchains validated

through the demonstrator cases described in the reports of the Tasks belonging to WPA4.

From a broader perspective, which considers the HUB as a whole and not only Spoke VS2, the VTB acts
as an "experimental digital platform" designed to test the functionality of the complete workflow. This
workflow begins with the generation of instability scenarios over relatively large areas and the definition
of parameters useful for estimating impact energy, and proceeds toward the evaluation of expected losses
(damage) to specific structures, infrastructures, or environmental assets. In other words, the VTB is
intended to demonstrate the applicability of the entire chain of processes triggered by endogenous and/or
exogenous forcing within a necessarily broad territorial context — RETURNLAND, a realistic virtual site
of large extent that includes all the environments which have been the subject of specific toolchain
development — and to assess the resulting expected damage within anthropic contexts, which are also
virtual yet realistic, located in the RETURNVILLEs established in specific areas of RETURNLAND. In
line with the aforementioned goals, the chosen approach consists in constructing both RETURNLAND
and RETURNVILLE through a "mosaicking" of real territorial segments, appropriately "stitched
together"” to form a coherent territorial whole. This choice aims to:

i) ensure the adherence of each VTB segment to real-world characteristics, and
i) link each segment to its specific datasets, thus enabling truly realistic analyses.

Lastly — though no less importantly — as a matter of good scientific practice, the selected real territorial
segments are not those where the toolchains have already been validated, thereby avoiding a tautological
feedback loop in the assessment of toolchain operability. It is reported in Fig. 60. It leverages a
combination of high-resolution digital elevation models (DEMSs), both terrestrial (Figure 61) and marine,

derived from Learning Examples (LEs) that provide comprehensive geological data.
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Figure 60. RETURNLAND terrestrial part, before the final merge step.

In the context of plain areas, the VTB includes representative sites in the Emilia-Romagna region (Figure
61a), the Apulia region (Figure 61b), and the Basilicata region (Figure 61c), selected to highlight key
ground instabilities processes. Specifically, the site in Emilia-Romagna focuses on liquefaction
phenomena and subsidence, while the Tavoliere delle Puglie, in Apulia region, addresses issues related to
subsidence and anthropogenic sinkholes. The Metaponto area, in Basilicata region, is of particular
significance, as it hosts an important archaeological park, highlighting the need to assess hazard impacts
not only on the environment but also on cultural heritage (VS4). The generation of this synthetic DEM
involved several important steps. First, the reference systems of the individual DEMs were transformed
to a common coordinate system (EPSG:32633 — WGS 84 / UTM zone 33N). Then, the DEMs were aligned
using rigid transformations (translations and rotations), considering their elevation values and minimizing
discrepancies between them. Once aligned, the DEMs were resampled to the same spatial resolution and
merged to form the final VTB. The entire workflow was carried out using various GIS software tools,
including Global Mapper, ArcGIS, and QGIS. This VTB is essential for simulating, testing, and analysing
real-world processes related to terrestrial and submarine processes. The insights derived from these VTB
scenarios are expected to significantly enhance our understanding of both terrestrial and submarine

processes.
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Figure 61. Image representing the study areas from which DTMs were extracted. In particular, the boxes
indicated by letters a), b) and c) indicate plain areas.

7 Conclusions

This deliverable (DV 2.4.6) has presented the implementation and validation of thematic mapping
methodologies for ground instabilities in large plains, focusing on soil liquefaction, regional subsidence,
and anthropogenic sinkholes. These methodologies, designed within the RETURN project framework,
aim to support the development of robust, transferable tools for multi-hazard risk assessment under
changing climatic and environmental conditions. The deliverable outlines a multi-level, tool-chain-based
approach that integrates spatial and temporal data to assess hazard severity and produce risk zoning for
the selected geohazards. Each process was treated through a structured methodology, from the
identification of relevant input parameters (related to predisposing, preparatory, and triggering factors) to
the generation of output indicators and hazard scenarios. In the following Table, a structured overview of
the methodologies applied to assess three ground instability processes—soil liquefaction, regional
subsidence, and anthropogenic sinkholes is reported. For each process, the corresponding assessment

method, required input datasets, and resulting output parameters are summarized.
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Process

Method

Input Data

Output

Soil Liquefaction

Multi-level tool chain approach
(Level 0-2):

- Qualitative screening (Level O -
1)

- Semi-empirical stress-based
analysis (Level 2)

- Geological and geomorphological
maps

- Groundwater table depth

- Peak Ground Acceleration (PGA)
- CPT geotechnical investigations
- Soil classification

- Historical liquefaction records

- Susceptibility maps (Level 0 & 1)
- Liquefaction Potential Index (LPI)
- Factor of Safety (FS) profiles

- Settlement maps

Regional Subsidence

Satellite-based monitoring and
temporal modeling:

- PSI (Persistent Scatterer
Interferometry)

- Trend and change detection
algorithms

- INSAR satellite data (e.g., Sentinel-1)
- Geological setting

- Land use and infrastructure layers

- Groundwater extraction data

- Geochronological calibration points

- Vertical displacement trends

- Classification of deformation (e.g.,
abrupt, seasonal)

- Modeled velocity fields

- Spatial maps of subsidence-prone
Zones

Anthropogenic Sinkhole

Ensemble susceptibility modeling
and probabilistic forecasting:

- Machine learning (RF, GBM,
MaxEnt)

- Poisson temporal analysis

- Sinkhole inventory (location, time, size)
- Geological and urban infrastructure data
- DEM, soil type, land use layers

- User-defined scenario classes (diameter,
time)

- Susceptibility maps (ensemble outputs)
- Variable importance plots

- Magnitude-based hazard scenarios (3
classes)

- Temporal probabilities (4 return
periods)

- Combined 12-scenario hazard matrix
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