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2. ABSTRACT 

 

This document describes the setup of an innovative procedure to reconstruct paleoclimatic river flows. 

Paleo-climatic data are essential to assess flood and drought risk, with uncertainty assessment, therefore 

overcoming the problem of the limited sample size of historical records.  

The procedure herein proposed can be applied to any large catchment of Italy and Europe. It emulates 

analogous experiments carried out for the American continent. It is applied for the first time in Italy. The 

results demonstrate the excellent capabilities of the proposed method to capture the historical variability of 
river flow for the relevant case of the Po River. 

The procedure is described here by including a copy of a paper that has been just accepted for publication in 
an international prestigious journal. 
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Abstract18

Characterizing the evolution of drought frequency and severity under anthropogenic global19

warming remains a key challenge because of the mismatch between the length of instru-20

mental records and the long-term variability of drought features. To address this gap,21

we propose a modeling framework that combines river flow observations, paleo-hydrological22

reconstructions, and climate model simulations. Such diversity of climate information,23

that is bridged in a flexible approach, allows evaluating the hazard of hydrological droughts24

for any large catchment globally. By focusing on the specific case of Alpine regions and25

analyzing the information contained in an ensemble for the period 1100–2100, we show26

that, compared to the past nine centuries, the mean annual flow in the Po River (Italy’s27

main water course) may decrease by about 10% during the 21st century, while the mean28

drought duration and severity are likely to increase by approximately 11% and 12%, re-29

spectively. Future drought conditions are likely to match, or even exceed, the driest pe-30

riod of the Medieval Climate Anomaly under different emissions scenarios. This indicates31

unprecedented drought conditions in Alpine regions in the coming decades, thus calling32

for an increased preparedness in managing water resources under climate change.33

Plain Language Summary34

The frequent occurrence of droughts, particularly hydrological droughts, has raised35

the concern that future climate changes may lead to increasing drought hazards which36

strongly impacts different socio-economical sectors. Predicting the evolution of hydro-37

logical drought features remains a key challenge due to the length of observational data38

generally insufficient to infer the long-term variability of these processes. We propose39

to address the problem through an approach that can be applied to any large river basin40

globallyand that is based on the integration of in-situ river flow observations, tree-ring-41

based river flow reconstruction, and climate model simulations. For the specific case of42

Alpine regions, we obtain a flexible set of long term climatic information to frame con-43

temporary and future droughts into a millennium-long hydroclimatic background and44

evaluate whether these events are precursors of increasing drought hazard. Our finding45

indicates that unprecedented drought conditions may occur in Alpine areas in the com-46

ing decades, suggesting the region needs to increase its preparedness in managing wa-47

ter resources under climate change.48

1 Introduction49

Major droughts occurring with increasing frequency have raised the concern that50

future changes in climate may lead to an increase in drought hazard (Ault, 2020). The51

worsening of hydrological droughts is of particular concern, as water availability in rivers52

and other water bodies strongly impacts agriculture, energy production, socio-economical53

assets, and, ultimately, public health (Van Loon & Laaha, 2015; Stahl et al., 2016; Ukkola54

et al., 2020). The concern is particularly relevant in Alpine regions where the season-55

ality of river flows is changing under global warming (Montanari et al., 2023). In addi-56

tion to climatic drivers, anthropogenic activities such as urbanization, irrigation, and dam57

operations may also profoundly reshape hydrological drought dynamics, by exacerbat-58

ing or alleviating the frequency, duration, and severity of droughts (AghaKouchak et al.,59

2015; Van Loon, Gleeson, et al., 2016; Van Loon, Stahl, et al., 2016; Di Baldassarre et60

al., 2018; AghaKouchak et al., 2021). Unlike other extreme events, droughts may per-61

sist for several years, thus resulting in “multiyear droughts” (Van Dijk et al., 2013; Sousa62

et al., 2018; Lund et al., 2018), with 5–10 years duration, and “megadroughts”, with du-63

ration even longer than a decade (B. I. Cook et al., 2016, 2022). These events cause pro-64

found impacts on water systems and socio-economic settings.65

Predicting the evolution in the frequency and severity of hydrological droughts re-66

mains a key challenge because of the mismatch between the length of the available ob-67

–2–



manuscript submitted to AGU Advances

servational data and the decadal and multi-decadal timescales that characterize the long-68

term variability of these processes (Ault et al., 2013, 2014; B. I. Cook et al., 2015). While69

only a few rainfall and river flow records span more than 200 years (Marani & Zanetti,70

2015; Montanari et al., 2023), most span only a few decades (Galelli et al., 2021), which71

is insufficient to infer the dynamics of severe hydrological droughts. Moreover, anthro-72

pogenic global warming adds additional uncertainty as historical statistics may not be73

fully representative of future conditions.74

A number of studies showed that paleo-reconstructions of hydroclimatic variables75

based on proxy data (e.g., tree-rings) provide valuable insights of natural variability dur-76

ing the pre-instrumental period (Büntgen et al., 2011; Rao et al., 2020; B. I. Cook et al.,77

2022; Khan et al., 2022; Chen et al., 2023). In particular, drought atlases—tree-ring-based78

paleoclimate reconstructions of the self-calibrating Palmer Drought Severity Index (scPDSI,79

(Wells et al., 2004))—have been used as reliable proxies for river flow reconstruction over80

North America (Ho et al., 2016, 2017) and Asia (Nguyen & Galelli, 2018; Nguyen et al.,81

2020; Wu et al., 2022). While proxy-based reconstructions undoubtedly play a pivotal82

role in unraveling statistical properties of past climate, they are, alone, insufficient to pro-83

vide a comprehensive understanding of the underlying physical processes governing changes84

in the climate system. General circulation models (GCMs) fill this gap by simulating the85

physical climate processes and providing a suite of climate variables that represent cli-86

mate dynamics at different spatial and temporal scales in a way that proxies cannot (PAGES87

Hydro2k Consortium, 2017). Specifically, model outputs from phase six of the Coupled88

Model Intercomparison Project (CMIP6) (O’Neill et al., 2016) and phase four of the Pa-89

leoclimate Model Intercomparison Project (PMIP4) (Kageyama et al., 2018) include sim-90

ulations of runoff (i.e., river flow per unit area) covering the period 850–2100, which can91

be used to estimate river flow. By combining these climate simulations with paleo-hydrological92

reconstructions and historical observations, one can derive ensembles that provide a de-93

tailed quantitative characterization of past, present, and future hydrological droughts94

(E. R. Cook, Seager, et al., 2010; B. I. Cook et al., 2015; PAGES Hydro2k Consortium,95

2017; Hessl et al., 2018), while considering inherent uncertainties and limitations. Here,96

we propose a framework for integrating the above information through cross-validation97

procedures to test their mutual agreement in the reconstruction of drought features. The98

diversity of the underlying information allows the application of the framework to any99

large river catchment with the capability to adapt to different situations of data avail-100

ability.101

In particular, we show that the information contained in the above ensembles re-102

veals key features about the evolution of future drought hazards in the Po River basin103

(Italy) , which is the collector of the main water courses of the Alpine regions of North-104

ern Italy. By integrating in-situ river flow observations, tree-ring-based river flow recon-105

structions, and PMIP4 and CMIP6 simulations, we frame contemporary drought events106

into a millennium-long hydroclimatic background (1100–2100) and evaluate whether these107

events are precursors of increasing drought hazard (IPCC, 2021; Essa et al., 2023). The108

choice of this case study is driven by the socio-economic importance of the basin, which109

supports around 40% of Italy’s gross domestic product, supplies 35% of the food demand,110

and generates 45% of the total hydropower over the country (Autorità di Bacino del Fi-111

ume Po, 2006). Perhaps more importantly, 6 out of the 10 worst droughts reported in112

instrumental records of the Po River flow occurred after 2000 (Montanari et al., 2023),113

with the last one peaking in 2022 and causing the worst hydrological drought in the past114

two centuries (Montanari et al., 2023; Avanzi et al., 2024). Being able to characterize115

the evolution of drought characteristics is therefore key to support water resources man-116

agement under changing climatic conditions.117
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2 Materials and Methods118

To introduce the proposed framework for hydrological drought hazard assessment119

we focus here on the case of the Po River. Our framework combines the information from120

long term river flow observations, paleo-river flow reconstructions and global climate mod-121

els.122

2.1 River flow observations123

Since the beginning of the 19th century, river stages (i.e., water levels) in multi-124

ple locations along the Po River have been regularly measured (Zanchettin, Traverso,125

& Tomasino, 2008). In particular, the river stage at Pontelagoscuro, which is considered126

the closure of the more than 70,000 km2 Po River basin, has been monitored since 1807.127

The monthly flow of the Po River from 1807 to 1916 has been reconstructed by using128

the rating curve at Pontelagoscuro (Zanchettin, Traverso, & Tomasino, 2008), which was129

estimated in the 1920s by the National Hydrographic Service of Italy (Giovannelli & Al-130

lodi, 1960; Montanari, 2012). By merging the above reconstruction with modern instru-131

mental data, a monthly record spanning from 1807 to the present day was obtained and132

applied in several studies with comparative assessments that validate the robustness of133

the time series (Zanchettin, Rubino, et al., 2008; Taricco et al., 2015; Rubinetti et al.,134

2020; Montanari et al., 2023). We use this 217-year record (from Jan 1, 1807 to Dec 31,135

2023)—at annual time scale—as the in-situ observation to benchmark the mean annual136

river flow reconstruction and the GCM simulations (Fig. S1).137

2.2 Old World Drought Atlas as proxy data for river flow reconstruc-138

tion139

For paleo-climate proxy data, we use the Old World Drought Atlas (OWDA) (E. R. Cook140

et al., 2015), a gridded dataset of the self-calibrating Palmer Drought Severity Index (scPDSI,141

(Wells et al., 2004)). The OWDA was reconstructed from 106 tree-ring chronologies and142

has a spatial resolution of 0.5◦×0.5◦, spanning Europe, North Africa and the Middle143

East. Each grid cell represents a time series of mean June-July-August (JJA) scPDSI144

from 0–2012. Drought atlases reconstructed from tree-rings provide a physical and sta-145

tistical basis for river flow reconstruction (Ho et al., 2016; Nguyen et al., 2020). Since146

both river flow and scPDSI can be modeled as functions of ring width, one can build a147

model to relate river flow to scPDSI directly. Unlike tree-rings, which are generally ir-148

regular in space and time, drought atlases provide a more consistent and homogenous149

gridded dataset, analogous to converting distributed climate station data into a unified150

gridded climate data, thereby simplifying the application of our framework without the151

need for detrending, standardizing, or nesting as required for tree-rings chronologies (Nguyen152

et al., 2020). Although uncertainty exists in drought atlases (since they are regression153

products based on tree-ring data), the computational advantages of using drought at-154

lases make the framework easy to reuse and suitable for both small- (Coulthard et al.,155

2016; Nguyen & Galelli, 2018) and large-scale reconstructions (Ho et al., 2017; Nguyen156

et al., 2020; Wu et al., 2022). Here, we use the OWDA portion between 1100—2012 to157

reconstruct annual river flow, as this is the stable portion with a sufficient number of tree-158

ring chronologies in the source tree-ring network (Fig. S2).159

2.2.1 Climate-informed proxy selection, reconstruction, and cross-validation160

A proper selection of tree-ring sequences is necessary to filter noise and retain only161

OWDA grid cells with a positive correlation with the observed river flow. To maintain162

both geographical proximity and hydroclimatic similarity between the river gauging sta-163

tion and an OWDA grid cell, we follow the hydroclimate characterization of Knoben et164

al. (2018) with a search radius. Accordingly, the hydroclimate at a location is charac-165

terized by three indices: aridity (a), moisture seasonality (s), and snow fraction (f) for166
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a global 0.5◦×0.5◦ resolution. The hydroclimatic similarity between two locations i and167

j is defined as their Euclidean distance in the hydroclimate space. We label this distance168

as dKWF , which is given by:169

dKWF (i, j) =
√
(ai − aj)2 + (si − sj)2 + (fi − fj)2. (1)

By calculating dKWF between each OWDA grid point and the river gauging sta-170

tion, we can screen out OWDA grid points that are geographically close to the station171

but hydroclimatically different. We vary the dKWF between 0.1 and 0.3 in 0.05 incre-172

ments. For each value of dKWF we screen grid points within a radius of 1,200 km en-173

compassing a set of the OWDA grid points surrounding the river gauging station. In our174

search regions for the Po River, scPDSI often correlates significantly and positively with175

river flow and the correlation pattern generally retains across distinct time windows (Fig.176

S3-S4).177

Next, we perform a weighted principal component analysis (PCA) to remove mul-178

ticollinearity among the OWDA grid points. Following the Point-by-Point Regression179

(PPR) method (E. R. Cook & Kairiukstis, 2013), we weight each grid point by its cor-180

relation with the observed river flow, by using the relationship181

zi = gi · rip. (2)

Here, gi is the scPDSI time series at grid point i, ri is the correlation between gi and the182

observed river flow, p is the weight exponent, and zi is the weighted version of gi. We183

use p values equal to 0, 0.5, 2/3, 1, 1.5 and 2, as in E. R. Cook, Anchukaitis, et al. (2010).184

We then perform PCA on the obtained zi time series and retain only those principal com-185

ponents (PCs) with eigenvalues ≥ 1.0 (Hidalgo et al., 2000). For each combination of186

dKWF and PCA weight p, we select a parsimonious subset from the retained PCs that187

is most relevant to the observed river flow by using the VSURF (Variable Selection Us-188

ing Random Forest) algorithm (Genuer et al., 2010). Therefore, we end up with an en-189

semble of 30 such subsets, the best of which is further selected using cross-validation and190

adopted for the final reconstruction.191

Finally, we build linear regression models between all the subsets of PCs and ob-192

served annual river flow. The reconstruction algorithm is implemented in the R pack-193

age ”ldsr” (Nguyen et al., 2020). We choose the 93-year window 1920–2012 as the calibration-194

validation period, during which daily and quality-checked river flow data are available.195

To capture regime shift and retain enough data points for calibration, we used a leave-196

20%-out cross-validation scheme. In each cross-validation run, we withhold a contigu-197

ous chunk of 20% of the data points for validation, and train the model on the remain-198

ing 80% record. Cross-validation is repeated 30 times to obtain the ensemble reconstruc-199

tion and get distributions of skill scores, which yield a reasonably robust mean estimate200

for each metric. Four goodness-of-fit statistics, i.e., (1) Coefficient of Determination (R2),201

(2) Nash-Sutcliffe Coefficient of Efficiency (NSE, (Nash & Sutcliffe, 1970)), (3) Kling-202

Gupta Efficiency (KGE, (Gupta et al., 2009)), and (4) Normalized Root Mean Squared203

Error (NRMSE) are computed. After cross-validating all subsets, the final reconstruc-204

tion for annual river flow of the Po River from 1100 to 2012 is built by selecting the en-205

semble member with the lowest Euclidean distance between the couple of values (NSE,206

KGE) and the point (1, 1). Prediction intervals for the reconstructed annual flow is com-207

puted by assuming that prediction errors follow a Gaussian probability distribution with208

the same variance as the residuals of the linear regression.209

2.3 Climate model simulations210

We obtain the annual runoff (i.e., river flow per unit area) output in the spatial do-211

main of the Po River basin from a 25-GCM-model ensemble of phase six of the Coupled212
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Model Intercomparison Project (CMIP6) (O’Neill et al., 2016). CMIP6 simulations are213

available for both historical (1850–2014) and future (2015–2100) periods. Future pro-214

jections are obtained under the emission scenarios “Shared Socioeconomic Pathway” (SSP)215

1-2.6 (SSP1-2.6) and 5-8.5 (SSP5-8.5). These are the scenarios considered by the Sce-216

nario Model Intercomparison Project (ScenarioMIP) (O’Neill et al., 2016) of CMIP6. Four217

of these GCM models also provide the ensemble simulation in the past1000 and past2k218

experiments (Jungclaus et al., 2017) from phase four of the Paleoclimate Model Inter-219

comparison Project (PMIP4) (Kageyama et al., 2018). The PMIP4 experiments span220

the time window 850–1849, while the CMIP6 experiments cover the period 1850–2100,221

so they can be concatenated for these 4 GCMs for PMIP4. Table S1 shows detailed in-222

formation for the whole set of considered GCMs. Therefore, we obtain both the CMIP6223

and the PMIP4 suites, spanning from 1850 to 2100 and 1100 to 2100, respectively. When224

computing the average annual runoff in the Po River basin using the CMIP6 and PMIP4225

ensembles, we bi-linearly interpolate all the runoff data into a common 0.25◦ × 0.25◦226

grid and then calculate the arithmetic mean value of the grids within the watershed. The227

sensitivity of the results to regridding is checked by comparing 0.25-degree with 1.5-degree228

outputs of GCMs (see Fig. S5). The multimodel ensemble mean is the arithmetic av-229

erage value of the outputs from the CMIP6 and the PMIP4 model ensembles.230

2.4 Bias correction231

Runoff simulations provided by GCM are at the grid scale. To compare them with232

observed river flows, one should take into account the potential bias. Therefore, we ap-233

ply quantile delta mapping (QDM) (Cannon et al., 2015) to correct bias with respect234

to the observed annual river flow series. QDM preserves model-projected relative change235

in quantiles, while at the same time correcting the systematic biases in quantiles of a model236

simulation compared to observed values. QDM has been widely adopted for bias correc-237

tion of GCM output such as precipitation (Li et al., 2022; Potter et al., 2023). Here, we238

apply QDM to CMIP6 and PMIP4 model runs and to the reconstructed river flow se-239

ries to ensure that the historical portion (1850–2012) of the bias corrected records has240

a similar probability distribution of the observed series while preserving past relative change241

in quantiles.242

2.5 Multiyear drought identification243

To cross-validate the reliability of both reconstruction and GCMs in simulating mul-244

tiyear hydrological droughts, we apply run theory (Yevjevich, 1967) to annual river flow245

series to characterize drought events in terms of drought frequency (DF), duration (DD),246

severity (DS), and intensity (DI), as in Guo and Montanari (2023). In detail, the long-247

term mean river flow RLT is adopted as a reference value to identify positive or nega-248

tive runs. If river flow in a given year is lower than an assigned threshold Tlower (where249

Tlower < RLT ), a negative run is started; the run ends in the year when the river flow250

is higher than RLT . If the interval between two negative runs is only one year and river251

flow in that year is less than a selected upper threshold Tupper (where Tupper > RLT ),252

then these two runs are combined into one drought. Finally, only runs that have a du-253

ration of no less than 3 years are labeled as multiyear drought events. We first standard-254

ize all the time series to zero mean and unit variance to ensure the drought character-255

istics can be compared between river flow observations, reconstructions, and GCM sim-256

ulations. Here, the thresholds Tupper and Tlower are defined as 0.2 more and 0.25 less than257

RLT , respectively. These thresholds are identified with a trial and error procedure by258

verifying that relevant droughts observed in the past are consistently recognised. After259

identifying a multiyear drought, DD, DS, DI and DF are computed as follows. DD is the260

time lapse between the start and the end of the event. DS is calculated as the cumula-261

tive river flow deficit with respect to RLT during the drought duration divided by the262

mean river flow. DI is the ratio between drought severity DS and duration DD. DF is263
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estimated by dividing the total number of droughts by the number of years included in264

the considered observation period.265

2.6 Goodness-of-fit testing and cross-validation of GCM simulations266

To assess the performance of each of the considered GCMs in reproducing the statis-267

tics of annual river flow during the historical period (1850-2012), we use the “Combined268

Probability-Probability” (CPP) plot (Koutsoyiannis & Montanari, 2022). The two-sample269

Kolmogorov-Smirnov test (Massey Jr, 1951) is used to quantify the distance between the270

probability distribution of annual river flows simulated by each GCM and the observed271

data. We use the Gaussian kernel density estimation (Terrell & Scott, 1992) method to272

estimate the probability density function of each series.273

3 Results274

3.1 Cross-validation of tree-ring-based annual flow reconstruction and275

climate model simulations during 1920–2012276

Bias-corrected annual river flow reconstruction and climate model simulations sat-277

isfactorily reproduce the observed annual river flow during the period 1920–2012 (Fig.278

1). The correlation, bias, and variability of annual data are well captured by the recon-279

struction model (Coefficient of Determination, R2=0.52; Nash-Sutcliffe Coefficient of Ef-280

ficiency, NSE=0.35; Kling-Gupta Efficiency, KGE=0.55; Normalized Root Mean Squared281

Error, NRMSE=0.02). Note that these results are not sensitive to the grid size of the282

GCM regridding (Fig. S5).283

The long-term mean river flow and multiyear drought events during 1920–2012 (Fig.284

1A), including drought frequency, mean duration, mean severity, and mean intensity (Ta-285

ble S2), are well captured by the reconstruction. The mean river flow from the whole re-286

construction period (1100–2012) is 1,508 m3/s, which is only slightly larger than the mean287

observed river flow during 1807–2012 (1,506 m3/s). The probability density distributions288

of reconstructed and GCM simulated annual river flows match the distribution from ob-289

served data (Fig. 1B), ensuring reliability for subsequent analyses of the Po River flow290

regime. For GCM, this result confirms the effectiveness of bias correction—performed291

with observation spanning from 1850 to 2012—in adjusting the distribution of data.292

For GCM simulations, the Combined Probability-Probability (CPP) plot (Koutsoyiannis293

& Montanari, 2022) and the two-sample Kolmogorov-Smirnov test confirm that one can-294

not reject the hypothesis that distributions from the models and observations are not295

different (p ≥ 0.05, see Fig. S6). Overall, the reliability of the reconstruction and GCM296

simulations in the historical period allows us to further investigate river flow and hydro-297

logical drought changes in a broader hydro-climatological context.298

3.2 Cross-validation of paleo and future river regime basing on previ-299

ous studies, tree-ring-based reconstruction and climate models300

From the reconstruction based on tree-rings, we apply run theory to the 30-year301

moving average series to identify dry periods (see Fig. 2 and Materials and Methods).302

In general, the results are consistent with previous studies (E. R. Cook et al., 2015; Büntgen303

et al., 2021; Helama et al., 2009). The Po River experienced several dry periods during304

the late Medieval Climate Anomaly (MCA) (∼1100–1170, ∼1200–1250), Renaissance (∼1400–305

1450, ∼1480–1580), and late Little Ice Age (LIA, ∼1750–1810). In addition, the recon-306

struction replicates documented flood-rich periods (blue shades in Fig. 2A) (Blöschl et307

al., 2020).308
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The PMIP4 ensemble exhibits wet (e.g., around the 1300s, ∼1590–1630, ∼1820–309

1850, and ∼1890–1930) and dry (e.g., 1200–1240, ∼1550–1580, and ∼1750–1790) peri-310

ods that are consistent with the reconstruction from tree-ring data. Note that our anal-311

ysis does not provide an indication of the drivers of these periods—i.e., whether they are312

a result of internal ocean-atmosphere variability or external forcings such as volcanic or313

solar activity. The PMIP4 ensemble mean, although well simulating the long-term mean314

river flow (1,502 m3/s), underestimates the magnitude of multi-decadal hydrological vari-315

ability.316

For the period 2015–2100, both CMIP6 and PMIP4 ensembles consistently project317

a declining trend in river flow under the SSP5-8.5 scenario (Fig. 2A). By the end of this318

century, river flow may be as low as that of the driest period in the paleo-climate record319

(i.e., late MCA). Even under the SSP1-2.6 scenario (Fig. S7), dry conditions similar to320

that of the late MCA period may occur, although the decrease in mean river flow is not321

as significant as with SSP5-8.5. The probability density functions of the CMIP6 ensem-322

ble, PMIP4 ensemble, reconstruction, and observations for the different periods clearly323

indicate that the mean annual river flow will decrease by about 10% by 2100 with re-324

spect to the corresponding past value (1100–2014) (Fig. 2B), thus suggesting the pos-325

sibility of extremely dry conditions in terms of mean annual river flow occurring by the326

end of the 21st century.327

3.3 Characteristics of past and future hydrological droughts328

We explore the changes of multiyear hydrological droughts in terms of frequency329

(DF), mean duration (DD), mean severity (DS), and mean intensity (DI, the ratio be-330

tween DS and DD) during the period 1100–2100 (Fig. 3 and Table S3). River flow re-331

construction, CMIP6 and PMIP4 simulations satisfactorily replicate DF, DD, DS and332

DI during the historical period 1850–2012 with a slight overestimation of DF by the re-333

construction and slightly higher DS and DI by CMIP6 (Fig. 3A). Both the reconstruc-334

tion and PMIP4 depict higher DF and lower DD, DS, and DI in the historical period com-335

pared to the pre-historical window (1100–1850). This means that droughts in the Po River336

were longer and more severe in the distant past than in the last 170 years. This finding337

is consistent with a previous study (Ionita et al., 2021), which shows that past megadroughts338

in Europe were longer and more severe than recent droughts.339

For future projections (Fig. 3A), CMIP6 shows that the dynamics of hydrological340

droughts exhibit an increase in both DD and DS under SSP5-8.5 by approximately 11%341

and 12%, respectively, whereas negligible changes are observed under SSP1-2.6. PMIP4342

projections depict an even drier future in terms of DD, DS and DI, with magnitude con-343

sistently higher under SSP5-8.5 with respect to SSP1-2.6. Overall, both PMIP4 and CMIP6344

indicate that mean DD, DS, and DI of multiyear droughts are projected to reach (un-345

der SSP1-2.6) or even surpass (under SSP5-8.5) pre-historical levels.346

In fact, the right tails of the probability density functions for DD, DS, and DI (Fig.347

3B) suggest possible recurrences of persistent and severe megadroughts under both fu-348

ture emission scenarios, similar to, or even worse than, those identified from river flow349

reconstruction and PMIP4 simulations, yet unobserved in the historical period. This re-350

sult is consistent with recent findings that the whole Mediterranean region may face a351

higher drought hazard in the future (Essa et al., 2023). The picture for drought frequency352

is different, as a decrease is projected by both PMIP4 and CMIP6 for both emission sce-353

narios with respect to the historical period, with a lower frequency predicted by CMIP6354

under SSP5-8.5 with respect to SSP1-2.6. Overall, these outcomes suggest that during355

the 21st century, we may expect fewer hydrological droughts, but each of them may be356

longer, more severe, and more intense, with a significant decline of mean annual river357

flow.358

–8–



manuscript submitted to AGU Advances

3.4 Placing recent droughts into a broader hydro-climatological context359

We compare the features of the above historical extreme events with those of the360

2022 hydrological drought that hit the Po River basin. In terms of annual average river361

flow (based on tree-rings-reconstruction), 2022 emerges as an unprecedented minimum362

in the past 900 years (Fig. 4A), even if one compares it with the lower bound of the 95%363

prediction interval. According to PMIP4, a single drought, occurring in late MCA, ap-364

peared more intense than the 2022 event (Fig. 4B). However, from the 10-year (Fig. 4C)365

and 30-year (Fig. 4D) moving averages of annual river flow, both reconstruction and PMIP4366

simulations display several past events in which multiyear average flows were lower than367

the recent period. In fact, by looking at the whole temporal extension of the 2022 drought,368

which lasted from 2015 to 2023, we confirm that such a multiyear event is unprecedented369

in the past 200 years, while longer drought events with higher cumulative deficit occurred370

during MCA and LIA (Fig. 4E). In the coming decades, climate model ensembles un-371

der SSP5-8.5 indicate the possible occurrence of more prolonged and exacerbated mul-372

tiyear droughts than the 2022 one, which may even exceed the worst event during MCA373

(Fig. 4F). Even under the SSP1-2.6 scenario (Fig. S8), future droughts are likely to oc-374

cur with similar behaviours as those during MCA from annual to multidecadal scale.375

4 Discussion and Conclusions376

Through multiple cross-validation we demonstrate that tree-ring-based river flow377

reconstruction for the past nine centuries of Po River outlet shows a general agreement378

with GCM-based simulations of paleo-runoff for annual river flows. This includes both379

dry and flood-rich periods. In addition, both reconstruction and GCM-based simulations380

are capable of reproducing multiyear drought events during the instrumental period. By381

assuming that the reliability of such reconstruction and simulations is conserved along382

the whole period covered by GCMs and paleo-hydrological data, we can study the evo-383

lution of drought characteristics throughout the millennium 1100–2100, thus gaining in-384

sights into drought hazards in historical and future time. Specifically, we detect the oc-385

currence of exceptionally severe dry periods during MCA, Renaissance, and late LIA,386

which lasted for at least 40 years. These droughts seem to be more extreme than the dry387

periods that were observed during the instrumental time span (1807–2023). Notably, cli-388

mate models consistently project a declining trend of mean river flow in the future, whose389

average value may turn out to be lower than the driest condition depicted by reconstruc-390

tion and paleo-climate simulations. Moreover, annual and multidecadal drought condi-391

tions in the future will likely resemble, or even exceed, the worst event during MCA.392

In addition, the compounding effects over the Po River basin of climate change and393

human activities—such as reduced water availability and rising water demand—are likely394

to further intensify future drought impacts (AghaKouchak et al., 2015, 2021). While our395

framework does not directly consider human impacts—which is less apparent compared396

to climatic drivers for the Po River flow at an annual time scale—it provides an essen-397

tial first step toward better characterizing drought evolution within a millennium-long398

context, helping to advance our understanding of droughts in a warmer climate. Future399

studies could benefit from incorporating water-human system dynamic modeling (Davies400

& Simonovic, 2011) that accounts for both natural and human-driven processes, offer-401

ing a more comprehensive understanding of interactions between the hydrological cycle402

and society (Van Loon, Stahl, et al., 2016; Quesada-Montano et al., 2018; AghaKouchak403

et al., 2021).404

The satisfactory ability of climate models to reproduce past droughts does not of405

course imply that future projections will become true. However, the consistent indica-406

tions provided by reconstruction and climate models in the simulation of past drought407

events and the occurrence of several important droughts in the Po River basin in the past408

20 years (Montanari et al., 2023) indicate that the projections presented here of future409
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drought hazard should be duly considered. Given that the continuously increasing tem-410

perature will likely amplify the impact of drought events, adaptation strategies are ur-411

gently needed to cope with future drought risk in the Po River basin and Alpine regions412

in general. There are, in particular, two socio-economic sectors that largely depend on413

the Po River and that should implement adaptation measures in response to the evolv-414

ing drought hazard that our study exposes. First, both hydropower and thermopower415

sectors are particularly vulnerable to prolonged droughts; a vulnerability that warrants416

interventions aimed to increase power supply and reduce the financial exposure of power417

producers during dry spells (Chowdhury et al., 2023). Examples include the deployment418

of renewables that are less influenced by water availability (e.g., wind, solar), the con-419

struction of power transmission corridors, or the re-design of power market mechanisms.420

A second sector that has been, and will be, profoundly affected by evolving drought haz-421

ard is the agricultural one (Straffelini & Tarolli, 2023; Monteleone et al., 2023). In this422

case, adaptation measures are already in place, although one may wonder whether such423

measures are adequate given the magnitude and duration of the events that are likely424

to hit the Po Valley. There are also several environmental aspects that should also be425

taken into account: saline intrusion in the river delta causes major impacts on the river426

ecosystem (Tarolli et al., 2023), in turn requiring a discussion on Minimum Environmen-427

tal Flow regulations.428

The Po River is a favorable case for the availability of an extremely long time se-429

ries of river flow observations and several historical reconstructions of flood rich and drought430

rich periods. This information allows to perform a suite of cross-validation tests offer-431

ing solid support to the reliability of future drought hazard assessment. On the other432

hand, the tree-ring-based drought atlas, PMIP4, and CMIP6 simulations are available433

at the global level and therefore the framework herein proposed is potentially applica-434

ble to other catchments. Where there is a drought atlas, i.e., Asia (E. R. Cook, Anchukaitis,435

et al., 2010), Europe (E. R. Cook et al., 2015, 2020), eastern Australia and New Zealand436

(Palmer et al., 2015), North America (E. R. Cook, Seager, et al., 2010), and southern437

South America (Morales et al., 2020), there is potential to conveniently reconstruct river438

flows and integrate reconstructions with GCM outputs by reapplying our framework. A439

possible challenge would be the lack of long-term river flow observation data (40 years440

or more, depending on the statistical behaviors of the time series) for calibrating the re-441

construction model. If river flow observations and other information that have been used442

for the case of the Po River are not available, it is still possible to cross-validate recon-443

structions with GCM simulations and other case-specific information that may be avail-444

able (e.g., reanalysis or satellite dataset).445

Note that the reliability of GCMs to simulate river flow has been tested here with446

respect to a large catchment (70,000 km2) at the annual time scale, for which the results447

are encouraging. Note, also, that the annual temporal resolution of the drought atlas does448

not allow us to apply our framework to intrannual time scales, such as monthly or sea-449

sonal. Given that the GCMs are interpolated over a 0.25-degree grid, the framework is450

potentially applicable to smaller basins. However, we emphasize that cross-validation based451

on local data and information becomes more and more essential with decreasing spatial452

scales.453

Overall, our approach shows that by combining instrumental records with paleo-454

hydrological reconstructions and climate projections, we can better characterize the evo-455

lution of droughts, ultimately providing the knowledge base necessary to inform future456

adaptation measures.457
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ically, the monthly time series of the Po River flows from January of 1807 to August of462

2022 (Zanchetin, 2022) is available in Zenodo at https://doi.org/10.5281/zenodo.7225698.463

Additionally, for the period spanning September 2022 to December 2023, the online daily464

streamflow record for the Po River at Pontelagoscuro can be downloaded from https://simc.arpae.it/dext3r/.465

Old World Drought Altas (Cook, 2015) is available from https://www.ncei.noaa.gov/access/paleo-466

search/study/19419. PMIP4 data are publicly available from https://esgf-node.llnl.gov/search/cmip6/.467

CMIP6 data are derived from https://cds.climate.copernicus.eu/datasets/projections-468

cmip6?tab=download.469
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Parma: Autoritá di bacino del fiume Po.496

Avanzi, F., Munerol, F., Milelli, M., Gabellani, S., Massari, C., Girotto, M., . . .497

others (2024). Winter snow deficit was a harbinger of summer 2022 socio-498

hydrologic drought in the Po Basin, Italy. Communications Earth & Environ-499

ment , 5 (1), 64.500
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Figure 1. Cross-validation of annual river flow reconstruction and climate model simulations

compared to observed river flows for the Po River at Pontelagoscuro from 1920 to 2012. (A) Re-

constructed (REC) and observed (OBS) river flows, where grey and yellow shades represent the

95% prediction interval of the reconstructed series and the multiyear drought events derived from

the observed river flows, respectively. (B) Kernel density profiles of river flows from observation,

reconstruction, PMIP4 and CMIP6 simulations along with their respective mean values. Note

that the CMIP6 mean (1,495 m3/s) well captures the observed mean (1,497 m3/s) thus these two

lines are indistinguishable.

Figure 2. Annual river flow observation (OBS), reconstruction (REC), and simulations from

PMIP4 and CMIP6 ensembles for the Po River at Pontelagoscuro from 1100 to 2100. (A) Time

series of river flows. Reconstructed mean annual river flow during 1100–2012, colored by their

departures from the reconstructed long-term mean (blue bars for positive, orange bars for neg-

ative, and grey shade for uncertainty range). Yellow and blue shades highlight drought periods

identified with run theory applied to reconstructed data and the documented flood-rich periods,

respectively. The light red shading shows the interquartile range for the 30-year moving average

of the 25-model CMIP6 ensemble, encompassing both historical simulations (1850–2014) and

future SSP5-8.5 projections (2015–2100). (B) Kernel density profiles of river flow observation

(OBS), reconstruction (REC), and simulations from PMIP4 and CMIP6 ensembles across distinct

periods: instrumental (1807–2023), paleo (1100–1849), historical (1850–2014), and future (2015–

2100), along with their respective mean values.

Figure 3. Characteristics of past and future multiyear hydrological droughts for the Po River

at Pontelagoscuro from 1100 to 2100. (A) Mean drought frequency (DF), duration (DD), severity

(DS), and intensity (DD) for multiyear hydrological droughts exhibited by river flow observation

(OBS), reconstruction (REC), and simulations from PMIP4 and CMIP6 across various periods,

including the paleo period (1100–1849), historical epoch (1850–2014), and two prospective future

scenarios (2015–2100). Solid lines represent the interquartile range. (B) Kernel density profiles

of DD, DS, and DI of river flow observation (OBS), reconstruction (REC), and simulations from

PMIP4 and CMIP6 across distinct periods.
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Figure 4. Drought occurrence and cumulative drought deficit for the Po River at Pontelagoscuro

from 1100 to 2100. Comparison between observed annual river flow (OBS) with (A) reconstruction

(REC) and future projections from CMIP6 ensemble and (B) paleosimulations and future projections

from PMIP4 ensemble. The yellow dashed line represents the lower band of the uncertainty range of re-

construction. The red and blue shade lines represent the full range of both CMIP6 and PMIP4 models

for past simulations and future projections. (C) Comparison between 10-year moving average series of

river flow observation (OBS), reconstruction (REC), PMIP4 ensemble, and CMIP6 ensemble. (D) Same

as (C) but with a 30-year moving average which represents multidecadal dry periods. (E) Progression of

the cumulative deficit from the drought onsets from observed and reconstructed multiyear drought events,

where events with a shorter duration or smaller deficit than the 2015–2023 event are depicted in grey. (F)

Same as (E) but paleosimulations from PMIP4 ensemble and future projections from CMIP6 ensemble

under SSP5-8.5. The horizontal red dashed line represents the deficit of the most severe event in the paleo

period.
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